Preview

Microbiology Independent Research Journal (MIR Journal)

Advanced search
Vol 9, No 1 (2022)
1-8 462
Abstract

The widespread use of antibacterial drugs for the treatment of respiratory diseases causes antimicrobial resistance in opportunistic microorganisms, which leads to the chronic forms of respiratory diseases and contributes to the risk of repeated respiratory infections. One of the new therapeutic solutions is the use of multicomponent water-soluble plant extracts. The goal of this study was to evaluate the antibacterial efficacy of the extracts of multicomponent herbal remedies versus the synthetic antiseptic for the treatment of the oropharyngeal and gut opportunistic microflora in children with chronic tonsillitis.

In a retrospective study, we compared the effectiveness of the plant extract Tonzinal (experimental group, 100 patients) versus the Miramistin antiseptic agent (control group, 40 patients) for the treatment of chronic tonsillitis in children 5 to 15 years old using various treatment regimens.

The oropharyngeal microbiocenosis was investigated by the bacteriological analysis of smears from the posterior wall of the pharynx and tonsils. Bacterial strains were isolated by inoculation on liquid agar media with the subsequent identification of Staphylococcus aureus, Streptococcus pyogenes, Candida spp., Moraxela cataralis, and Mycoplasma pneumonie according to the morphological and biochemical characteristics. For the bacteriological analysis of gut microbiocenosis, Staphylococcus aureus, Streptococcus spp., Candida spp., Klebsiella spp., Clostridiums spp., and Proteus spp. were isolated from the fecal filtrate and then identified by the same methods. The occurrence rate of microorganisms in patients of the experimental and control groups was compared before and after the 10-day course of therapy.

A statistically significant decrease in the occurrence rate of Staphylococcus aureus (from 25% to 0%, p<0.01) and Candida spp. (from 18% to 0%, p<0.01) in the oropharynx of patients in the experimental group and from 20% to 7.5% and from 5% to 0% (p<0.05), respectively, in the control group was observed. A statistically significant decrease in the occurrence rate of Streptococcus pyogenes was only observed in the experimental group (from 30% to 0%, p<0.01). Treatment with Tonzinal or Miramistin did not lead to the statistically significant changes in the occurrence rate of opportunistic microorganisms in the gut microflora of the patients in both groups. Therefore, we have shown a higher antimicrobial efficacy of Tonzinal versus the Miramistin antiseptic for the treatment of the oropharyngeal opportunistic microorganisms in children with chronic tonsillitis.

9-17 281
Abstract

A biochemical analysis of blood and a study of the chemical composition of the blood samples of 163 people 45–90 years old with type 2 diabetes mellitus and dyslipidemia was conducted. The concentrations of the following compounds in the blood were determined: fatty acids, aldehydes, and styrenes of microbial origin as well as the levels of glucose triglycerides, cholesterol, and lipids of low and high density. The chemical composition of blood was determined by gas chromatography-mass spectrometry. The concentrations of fatty acids, aldehydes, and styrenes were used to calculate the total molar concentration of chemical compounds, the concentration of octadecene aldehyde (18a), the total concentration of hydroxy acids of derivatives of the hydroxyl residue of lipid A of bacterial endotoxin (3OH-FA), and the grouped total concentrations of chemical compounds of microbial origin, which determine the representation of the main four phylotypes of the human microbiome: Actinobacteria, Bacteroidetes, Proteobacteria, and Firmicutes.

As a result of the study, data were obtained on an increase in the total concentration of chemical compounds, the concentration of octadecene aldehyde, and the concentration of 3OH-FA in violation of carbohydrate metabolism by the type of diabetes mellitus type 2. There was a decrease in the representation of Bacteroidetes in violation of carbohydrate metabolism and a decrease in the representation of Proteobacteria, Firmicutes in violation of carbohydrate and lipid metabolism, and an increase in the representation of Actinobacteria in violation of lipid metabolism, including those combined with a violation of carbohydrate metabolism.

In patients with type 2 diabetes mellitus and in the control group, there was an inverse correlation between the presence of Firmicutes and blood glucose levels. In the type 2 diabetes mellitus group, there was a direct correlation between the representation of Bacteroidetes and the level of triglycerides in the blood.

In patients with lipid metabolism disorders, we did not reveal statistically significant changes in the concentrations of microbial markers in the blood of patients nor statistically significant correlations between the biochemical blood parameters and the representation of microbiome phylotypes.

18-30 286
Abstract

Gut microbiota plays an important role in human health and the development of various diseases. We describe the intestinal microbiome of 31 healthy individuals and 29 patients who have hematological malignancies from Belarus. Bacteria that belong to Faecalibacterium, Blautia, Bacteroides, Ruminococcus, Bifidobacterium, Prevotella, Lactobacillus, and Alistipes genera were predominant in the gut of healthy people. Based on the dominant microbiota species, two enterotype-like clusters that are driven by Bacteroides and Blautia, respectively, were identified. A significant decrease in alpha diversity and alterations in the taxonomic composition of the intestinal microbiota were observed in patients with hematological malignancies compared to healthy people. The microbiome of these patients contained a high proportion of Bacteroides, Blautia, Faecalibacterium, Lactobacillus, Prevotella, Alistipes, Enterococcus, Escherichia-Shigella, Ruminococcus gnavus group, Streptococcus, and Roseburia. An increased relative abundance of Bacteroides vulgatus, Ruminococcus torques, Veillonella, Tuzzerella, Sellimonas, and a decreased number of Akkermansia, Coprococcus, Roseburia, Agathobacter, Lachnoclostridium, and Dorea were observed in individuals with hematological malignancies. Generally, the composition of the gut microbiome in patients was more variable than that of healthy individuals, and alterations in the abundance of certain microbial taxa were individually specific.

31-36 283
Abstract

We investigated the occurrence rate of antibiotic-resistant salmonellae in exotic pet reptiles in Saudi Arabia. Salmonellae samples were collected from eight different genera of pet reptiles (snakes and lizards). Selective enrichment and selective plating procedures were carried out in order to detect salmonellae. Isolated bacteria were identified using biochemical tests, API 20E strips, and the VITEK compact system. Antimicrobial susceptibility testing was performed using the disc diffusion method. Salmonella spp. belonging to subspecies I (Salmonella enterica ssp. enterica) were detected in 29.2% of the samples. All of the detected salmonellae showed multidrug resistance (p<0.001, χ2 ). The results demonstrated that pet reptiles in private households could present health hazards to humans. Therefore, these animals should be carefully handled to avoid infection. To the best of our knowledge, this is the first report regarding the occurrence rate of antibiotic-resistant salmonellae in pet reptiles in Saudi Arabia. The detected Salmonella serovars should be subjected to further in-depth molecular analyses in order to understand the overall epidemiology of salmonellosis in Saudi Arabia.

37-55 197
Abstract

Antimicrobial peptides and proteins (AMPs) are endogenous compounds that have a direct antimicrobial effect on bacteria (e. g., by disrupting bacterial membranes), as well as on fungi and viruses. AMPs are the main component of the innate immunity of living organisms and are produced by both epithelial cells (skin cells, cells of respiratory tract, intestine, urinary and genital tracts) and cells of the immune system and are secreted into secretory fluids. AMPs can also act as chemoattractants for immunocompetent cells (neutrophils, monocytes, T lymphocytes, dendritic cells) in the inflammation site and affect the antigen presenting cells by modulating adaptive T cell immune responses. The representatives of the main 15 AMP classes, that we describe in this review, are the most studied group of the large pool of these compounds. We discuss their localization, expression, and concentration in various biofluids of humans under normal and pathological conditions.

56-70 167
Abstract

The viruses most commonly affecting the human respiratory tract include rhinoviruses, respiratory syncytial virus (RSV), influenza viruses, and coronaviruses (CoVs). The virus infection of the epithelial cells of the respiratory tract triggers an inflammation accompanied by the release of pro-inflammatory cytokines and chemokines including IL6, IL8(CXCL8), IL1β, and tumor necrosis factor α (TNFα). A subsequent acute inflammatory response in the lungs is accompanied by an increase in the production of cytokines and chemokines − CXCR3 receptor ligands – that are key players of acute inflammatory response that induce an influx of neutrophils and T cells into the lungs.

We studied the pharmacodynamic activity of the new compound XC221GI to suppress the IL6 and IL8 of an experimental RSV infection in vitro in human lung carcinoma cells A549 and in vivo in the lungs of cotton rats. We also studied the effect of XC221GI on the production of the chemokines CXCL10, CXCL9, and CXCL11 in mouse bronchoalveolar lavage as well as on the influx of neutrophils into the mouse lungs after the intranasal administration of interferon γ (IFNγ).

The obtained results demonstrate the anti-inflammatory activity of XC221GI, which suppresses the production of excessive levels of the key inflammatory markers IL6, IL8, CXCL10, CXCL9, and CXCL11 as well as the influx of neutrophils into the lungs thereby reducing lung pathology. These data confirm the effectiveness of XC221GI as a means of preventive anti-inflammatory therapy during a viral infection of the respiratory tract.

71-74 117
Abstract

Influenza A virus (IAV) is an etiological agent infecting animals and humans that is responsible for seasonal epidemics and devastating pandemics. IAV nuclear export protein (NEP) is a multifaceted protein that plays a pivotal role in the virus life cycle. One of the most important functions of IAV NEP is to transport newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm. This function is achieved by the interaction between NEP and matrix protein 1 (M1) facilitated by Trp78 surrounded by negatively charged Glu residues in the M1 binding domain of NEP. In the present study, we targeted the IAV NEP with ivermectin. Utilizing in silico molecular docking, we tested ivermectin for its ability to bind NEP. We found that ivermectin strongly binds to NEP with an affinity of –7.3 kcal/mol. The ivermectin binding site identified in this study is located in the NEP-M1 protein interaction region. It is anticipated that blocking NEP-M1 protein interaction can have a considerably deleterious effect on IAV assembly and propagation. This study highlights the possibility of exploring ivermectin as a potential IAV NEP protein blocker, which could be an important therapeutic strategy in the treatment of influenza.

75-81 48
Abstract

Anaerobes, which are components of microbiota, can cause life-threatening infections. Because of their fastidious nature, they are difficult to isolate and are often overlooked. The goal of this study was to identify the anaerobic bacteria isolated from clinical specimens at the Central Laboratory of Hacettepe University Hospital in 2015-2018 and to evaluate the distribution of the isolated bacterial species among the different specimen types. The anaerobic bacteria isolated from the specimens were identified by the conventional methods and MALDI-TOF MS.

Overall, 15,300 anaerobic cultures were studied. Of these, 14,434 (94.3%) were blood samples and 866 (5.7%) were other clinical specimens. A total of 138 anaerobic bacteria were isolated: 62 (44.9%) were isolated from blood samples and 76 (55.1%) from other specimens. The most isolated anaerobes from blood cultures were Bacteroides spp. (41.9%), followed by Cutibacterium acnes (25.8%) and Clostridium spp. (9.7%). The most isolated anaerobes from the other specimens were Gram-negative bacilli, including Bacteroides spp. (15.8%), Fusobacterium spp. (14.5%), Prevotella spp. (14.5%), and Porphyromonas spp. (2.6%). Anaerobic Finegoldia magna represented the major species among the isolated Gram-positive bacteria (10.5%). Anaerobic growth was observed in 0.4% of all the blood cultures and in 5.8% of the positive blood cultures. The results of our study showed that the incidence of anaerobic bacteremia was stable during the 2015-2018 period.



ISSN 2500-2236 (Online)