Preview

Microbiology Independent Research Journal (MIR Journal)

Расширенный поиск

Membrane protein of SARS-CoV-2 plays a pivotal role in the availability of active testosterone through its interaction with AKR1C2 enzyme leading to the upregulation of TMPRSS2 protease expression

https://doi.org/10.18527/2500-2236-2021-8-1-38-40

Полный текст:

Аннотация

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease (COVID-19) and ongoing pandemic that has devastated humankind. During the COVID-19 pandemic, it was noticed that the mortality rate in men is higher than that in women. The membrane (M) protein of SARS-CoV-2 plays a pivotal role in the viral life cycle regulating intracellular trafficking and processing of spike (S) protein. In infected individuals, M protein inhibits the conversion of active testosterone to its inactive form through its interaction with Aldo-keto reductase family 1 member C2 (AKR1C2) protein. This leads to the high availability of active testosterone and boosts the formation of its complex with an androgen receptor that in turn promotes the transcription of the transmembrane protease serine 2 (TMPRSS2) gene. TMPRSS2 is known to play a pivotal role in the priming of S protein that is necessary for the SARS-CoV-2 entry into the host cell. Therefore, the interaction of the M protein of SARSCoV-2 with AKR1C2 eventually leads to the upregulation of the transcription of the TMPRSS2 gene that results in an enhanced viral infection and in turn higher mortality in men. The interaction of M protein with AKR1C2 could be a possible target for SARSCoV-2 antiviral drug design.

Об авторах

V. Darapaneni
Anvek Institute of Biomolecular Research
Индия

55-18-1, Visakhapatnam, India, 530022



A. Jaldani
Anvek Institute of Biomolecular Research
Индия

55-18-1, Visakhapatnam, India, 530022



Список литературы

1. V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3), 155-70. doi: 10.1038/s41579-020-00468-6.

2. Guy JS, Breslin JJ, Breuhaus B, Vivrette S, Smith LG. Characterization of a coronavirus isolated from a diarrheic foal. J Clin Microbiol 2000; 38(12), 4523-6. doi: 10.1128/JCM.38.12.4523-4526.2000.

3. Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology 2003; 8(Suppl), S9-14. doi: 10.1046/j.1440-1843.2003.00518.x.

4. Mohd HA, Al-Tawfiq JA, Memish ZA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virol J 2016; 13, 87. doi: 10.1186/s12985-016-0544-0.

5. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4), 450-2. doi: 10.1038/s41591-020-0820-9.

6. WHO coronavirus disease (COVID-19) dashboard. Available: https://covid19.who.int/. Date accessed: September, 2021.

7. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8), 875-9. doi: 10.1038/nm1267.

8. Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res 2020; 116(14), 2197-206. doi: 10.1093/cvr/cvaa284.

9. Griffith DM, Sharma G, Holliday CS, Enyia OK, Valliere M, Semlow AR, et al. Men and COVID-19: A Biopsychosocial Approach to Understanding Sex Differences in Mortality and Recommendations for Practice and Policy Interventions. Prev Chronic Dis 2020; 17, E63. doi: 10.5888/pcd17.200247.

10. Sharma G, Volgman AS, Michos ED. Sex Differences in Mortality From COVID-19 Pandemic: Are Men Vulnerable and Women Protected? JACC Case Rep 2020; 2(9), 1407-10. doi: 10.1016/j.jaccas.2020.04.027.

11. Sama IE, Ravera A, Santema BT, van Goor H, Ter Maaten JM, Cleland JGF, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J 2020; 41(19), 1810-7. doi: 10.1093/eurheartj/ehaa373.

12. Dutta S, Sengupta P. SARS-CoV-2 and Male Infertility: Possible Multifaceted Pathology. Reprod Sci 2021; 28(1), 23-6. doi: 10.1007/s43032-020-00261-z.

13. Dutta S, Sengupta P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: can testicular-adrenal crosstalk be ruled-out? J Basic Clin Physiol Pharmacol 2020; 31(6), 20200205. doi: 10.1515/jbcpp-2020-0205.

14. Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66, 193-292. doi: 10.1016/S0065-3527(06)66005-3.

15. Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, Zhang Y, Zhang M. Effect of SARS-CoV-2 infection upon male gonadal functions: a single centre-based study. MedRxiv 2020. doi: 10.1101/2020.03.21.20037267.

16. Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol 2020; 16(27), 2029-33. doi: 10.2217/fon-2020-0571.

17. Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC, et al. Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 2002; 277(10), 8338-45. doi: 10.1074/jbc.M105044200.

18. Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 2000; 351(1), 67-77. doi: 10.1042/0264-6021:3510067.

19. Penning TM, Jin Y, Steckelbroeck S, Lanisnik Rizner T, Lewis M. Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins. Mol Cell Endocrinol 2004; 215(1-2), 63-72. doi: 10.1016/j.mce.2003.11.006.

20. Penning TM, Jin Y, Rizner TL, Bauman DR. Prereceptor regulation of the androgen receptor. Mol Cell Endocrinol 2008; 281(1-2), 1-8. doi: 10.1016/j.mce.2007.10.008.

21. Samavarchi-Tehrani P, Abdouni H, Knight JDR, Astori A, Samson R, Lin Z-Y, Kim D-K, Knapp JJ, St-Germain J, Go CD. A SARS-CoV-2 – host proximity interactome. bioRxiv 2020. doi: 10.1101/2020.09.03.282103.

22. Yee DJ, Balsanek V, Bauman DR, Penning TM, Sames D. Fluorogenic metabolic probes for direct activity readout of redox enzymes: Selective measurement of human AKR1C2 in living cells. Proc Natl Acad Sci USA 2006; 103(36), 13304-9. doi: 10.1073/pnas.0604672103.

23. Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 2014; 4(11), 1310-25. doi: 10.1158/2159-8290.CD13-1010.

24. Chernecky CC, Berger BJ. Laboratory Tests and Diagnostic Procedures (eBook). Elsevier Health Sciences, 2012. ISBN 978-1-4557-4502-9.


Для цитирования:


Darapaneni V., Jaldani A. Membrane protein of SARS-CoV-2 plays a pivotal role in the availability of active testosterone through its interaction with AKR1C2 enzyme leading to the upregulation of TMPRSS2 protease expression. Microbiology Independent Research Journal (MIR Journal). 2021;8(1):38-40. https://doi.org/10.18527/2500-2236-2021-8-1-38-40

For citation:


Darapaneni V., Jaldani A. Membrane protein of SARS-CoV-2 plays a pivotal role in the availability of active testosterone through its interaction with AKR1C2 enzyme leading to the upregulation of TMPRSS2 protease expression. Microbiology Independent Research Journal (MIR Journal). 2021;8(1):38-40. https://doi.org/10.18527/2500-2236-2021-8-1-38-40

Просмотров: 125


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.


ISSN 2500-2236 (Online)