Preview

Microbiology Independent Research Journal (MIR Journal)

Расширенный поиск

Interference plasmids and their use in combating bacterial resistance

https://doi.org/10.18527/2500-2236-2019-6-1-37-42

Полный текст:

Аннотация

Fighting against pathogenic bacteria that are resistant to antibiotics has become critical for health care worldwide. More than half a million people die every year from infections caused by drug resistant bacteria. Since bacteria acquire resistance to antibiotics very quickly and the development of new antibiotics is a lengthy process, the search for new approaches to stop the spread of bacterial resistance is extremely important. The spread of antibiotic resistance is accomplished mainly by horizontal gene transfer. Scientists are concentrating their efforts on studying the mechanism of this process in order to find a way to stop or reverse it. In this paper, the author gives a brief review of the recent studies on horizontal gene transfer, particularly on incompatibility-based plasmid curing systems. The author examines new possibilities to use the mechanism of horizontal gene transfer for the developing of novel approaches to fight pathogenic bacteria.

Об авторе

A. Zhivich
Framingham State University
Соединённые Штаты Америки

Massachusetts, USA



Список литературы

1. Tackling Drug-Resistance Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance Chaired by Jim O’Neil. May 2016. Available at: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

2. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016; 13(11), e1002184. doi: 10.1371/journal.pmed.1002184.

3. Juhas M. Horizontal gene transfer in human pathogens. Crit Rev Microbiol. 2015; 41(1), 101-8. doi: 10.3109/1040841X.2013.804031.

4. Liu L, Chen X, Skogerbo G, Zhang P, Chen R, He S, et al. The human microbiome: a hot spot of microbial horizontal gene transfer. Genomics. 2012; 100(5), 265-70. doi: 10.1016/j.ygeno.2012.07.012.

5. Card RM, Cawthraw SA, Nunez-Garcia J, Ellis RJ, Kay G, Pallen MJ, et al. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli. MBio. 2017; 8(4). doi: 10.1128/mBio.00777-17.

6. Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1735). doi: 10.1098/rstb.2016.0424.

7. Kelly BG, Vespermann A, Bolton DJ. The role of horizontal gene transfer in the evolution of selected foodborne bacterial pathogens. Food Chem Toxicol. 2009; 47(5), 951-68. doi: 10.1016/j.fct.2008.02.006.

8. Blass BE. Basic Principles of Drug Discovery and Development. Academic Press, 2015. Available at: https://doi.org/10.1016/C2012-0-06670-7

9. Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016; 353(6304), 1147-51. doi: 10.1126/science.aag0822.

10. Sun D. Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. Front Microbiol. 2018; 9, 2154. doi: 10.3389/fmicb.2018.02154.

11. Fernandez-Lopez C, Bravo A, Ruiz-Cruz S, SolanoCollado V, Garsin DA, Lorenzo-Diaz F, et al. Mobilizable Rolling-Circle Replicating Plasmids from GramPositive Bacteria: A Low-Cost Conjugative Transfer. Microbiol Spectr. 2014; 2(5). doi: 10.1128/microbiolspec.PLAS-0008-2013.

12. Schjorring S, Krogfelt KA. Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol. 2011; 2011, 312956. doi: 10.1155/2011/312956.

13. Bordeleau E, Ghinet MG, Burrus V. Diversity of integrating conjugative elements in actinobacteria: Coexistence of two mechanistically different DNAtranslocation systems. Mob Genet Elements. 2012; 2(2), 119-24. doi: 10.4161/mge.20498.

14. Dimitriu T, Misevic D, Lotton C, Brown SP, Lindner AB, Taddei F. Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. PLoS Biol. 2016; 14(6), e1002478. doi: 10.1371/journal.pbio.1002478.

15. Knoppel A, Lind PA, Lustig U, Nasvall J, Andersson DI. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol Biol Evol. 2014; 31(5), 1220-7. doi: 10.1093/molbev/msu076.

16. Charpentier X, Kay E, Schneider D, Shuman HA. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J Bacteriol. 2011; 193(5), 1114-21. doi: 10.1128/JB.01146-10.

17. Tamang MD, Gurung M, Kang MS, Nam HM, Moon DC, Jang GC, et al. Characterization of plasmids encoding CTX-M beta-lactamase and their addiction systems in Escherichia coli isolates from animals. Vet Microbiol. 2014; 174(3-4), 456-62. doi: 10.1016/j.vetmic.2014.10.004.

18. Chukwudi CU, Good L. The role of the hok/sok locus in bacterial response to stressful growth conditions. Microb Pathog. 2015; 79, 70-9. doi: 10.1016/j.micpath.2015.01.009.

19. Burbank LP, Stenger DC. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection. Phytopathology. 2016; 106(8), 928-36. doi: 10.1094/PHYTO-02-16-0097-R.

20. Willms AR, Roughan PD, Heinemann JA. Static recipient cells as reservoirs of antibiotic resistance during antibiotic therapy. Theor Popul Biol. 2006; 70(4), 436-51. doi: 10.1016/j.tpb.2006.04.001.

21. Gomis-Ruth FX, Coll M. Cut and move: protein machinery for DNA processing in bacterial conjugation. Curr Opin Struct Biol. 2006; 16(6), 744-52. doi: 10.1016/j.sbi.2006.10.004.

22. Graf FE, Palm M, Warringer J, Farewell A. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Dev Res. 2019; 80(1), 19-23. doi: 10.1002/ddr.21457.

23. Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev. 2018; 42(6), 781-804. doi: 10.1093/femsre/fuy031.

24. Brandi L, Falconi M, Ripa S. Plasmid curing effect of trovafloxacin. FEMS Microbiol Lett. 2000; 184(2), 297-302. doi: 10.1111/j.1574-6968.2000.tb09030.x.

25. Paul D, Dhar Chanda D, Chakarvarty A, Bhattacharjee A. An insight into analysis and elimination of plasmids that encodes metallo-beta-lactamases in Pseudomonas aeruginosa. J Glob Antimicrob Resist. 2019. doi: 10.1016/j.jgar.2019.09.002.

26. Patwardhan RB, Dhakephalkar PK, Chopade BA, Dhavale DD, Bhonde RR. Purification and Characterization of an Active Principle, Lawsone, Responsible for the Plasmid Curing Activity of Plumbago zeylanica Root Extracts. Front Microbiol. 2018; 9, 2618. doi: 10.3389/fmicb.2018.02618.

27. Spengler G, Molnar A, Schelz Z, Amaral L, Sharples D, Molnar J. The mechanism of plasmid curing in bacteria. Curr Drug Targets. 2006; 7(7), 823-41. doi: 10.2174/138945006777709601.

28. Amaral L, Viveiros M, Molnar J. Antimicrobial activity of phenothiazines. In Vivo. 2004; 18(6), 725-31. PubMed PMID: 15646813.

29. Getino M, Sanabria-Rios DJ, Fernandez-Lopez R, Campos-Gomez J, Sanchez-Lopez JM, Fernandez A, et al. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer. MBio. 2015; 6(5), e01032-15. doi: 10.1128/mBio.01032-15.

30. Saranathan R, Sudhakar P, Karthika RU, Singh SK, Shashikala P, Kanungo R, et al. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids. Indian J Med Res. 2014; 140(2), 262-70. PubMed PMID: 25297360.

31. Mesas JM, Rodriguez MC, Alegre MT. Plasmid curing of Oenococcus oeni. Plasmid. 2004; 51(1), 37-40. PubMed PMID: 14711527.

32. Wan Z, Goddard NL. Competition between conjugation and M13 phage infection in Escherichia coli in the absence of selection pressure: a kinetic study. G3 (Bethesda). 2012; 2(10), 1137-44. doi: 10.1534/g3.112.003418.

33. Jalasvuori M, Friman VP, Nieminen A, Bamford JK, Buckling A. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol Lett. 2011; 7(6), 902-5. doi: 10.1098/rsbl.2011.0384.

34. Bikard D, Barrangou R. Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol. 2017; 37, 155-60. doi: 10.1016/j.mib.2017.08.005.

35. Lauritsen I, Porse A, Sommer MOA, Norholm MHH. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb Cell Fact. 2017; 16(1), 135. doi: 10.1186/s12934-017-0748-z.

36. Novick RP. Plasmid incompatibility. Microbiol Rev. 1987; 51(4), 381-95. PubMed PMID: 3325793.

37. Kamruzzaman M, Shoma S, Thomas CM, Partridge SR, Iredell JR. Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS One. 2017; 12(2), e0172913. doi: 10.1371/journal.pone.0172913.

38. Zhivich A, Romanova J. US Patent Application 62/859,837, June 2019.

39. Chan CT, Lee JW, Cameron DE, Bashor CJ, Collins JJ. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol. 2016; 12(2), 82-6. doi: 10.1038/nchembio.1979.

40. Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP. Controlled gene expression systems for lactic acid bacteria: transferable nisininducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol. 1997; 63(11), 4581-4. PubMed PMID: 9361443.

41. Zhang L, Jin Q, Luo J, Wu J, Wang S, Wang Z, et al. Intracellular Expression of Antifreeze Peptides in Food Grade Lactococcus lactis and Evaluation of Their Cryoprotective Activity. J Food Sci. 2018; 83(5), 1311-20. doi: 10.1111/1750-3841.14117.

42. Zhou XX, Li WF, Ma GX, Pan YJ. The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv. 2006; 24(3), 285-95. doi: 10.1016/j.biotechadv.2005.11.001.

43. Akagi K, Kanai M, Saya H, Kozu T, Berns A. A novel tetracycline-dependent transactivator with E2F4 transcriptional activation domain. Nucleic Acids Res. 2001; 29(4), E23. doi: 10.1093/nar/29.4.e23.

44. Sun CH, Tai JH. Development of a tetracycline controlled gene expression system in the parasitic protozoan Giardia lamblia. Mol Biochem Parasitol. 2000; 105(1), 51-60. doi: 10.1016/s0166-6851(99)00163-2.

45. Yin DX, Zhu L, Schimke RT. Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Anal Biochem. 1996; 235(2), 195-201. doi: 10.1006/abio.1996.0112.

46. Wang IN, Smith DL, Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol. 2000; 54, 799-825. doi: 10.1146/annurev.micro.54.1.799.

47. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins--application approaches. Curr Med Chem. 2015; 22(14), 1757-73. doi: 10.2174/0929867322666150209152851.

48. Rodriguez-Rubio L, Gutierrez D, Donovan DM, Martinez B, Rodriguez A, Garcia P. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol. 2016; 36(3), 542-52. doi: 10.3109/07388551.2014.993587.

49. Gao Y, Feng X, Xian M, Wang Q, Zhao G. Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol. 2013; 97(16), 7121-9. doi: 10.1007/s00253-013-5100-x.

50. Wang Y, Ling C, Chen Y, Jiang X, Chen GQ. Microbial engineering for easy downstream processing. Biotechnol Adv. 2019; 37(6), 107365. doi: 10.1016/j.biotechadv.2019.03.004.

51. Tamekou Lacmata S, Yao L, Xian M, Liu H, Kuiate JR, Liu H, et al. A novel autolysis system controlled by magnesium and its application to poly (3-hydroxypropionate) production in engineered Escherichia coli. Bioengineered. 2017; 8(5), 594-9. doi: 10.1080/21655979.2017.1286432.

52. Borrero-de Acuna JM, Hidalgo-Dumont C, Pacheco N, Cabrera A, Poblete-Castro I. A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Sci Rep. 2017; 7(1), 4373. doi: 10.1038/s41598-017-04741-2.

53. Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol. 2018; 102(6), 2563-81. doi: 10.1007/s00253-018-8811-1.

54. Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015; 5(3), e1062590. doi: 10.1080/21597081.2015.1062590.


Для цитирования:


Zhivich A. Interference plasmids and their use in combating bacterial resistance. Microbiology Independent Research Journal (MIR Journal). 2019;6(1):37-42. https://doi.org/10.18527/2500-2236-2019-6-1-37-42

For citation:


Zhivich A. Interference plasmids and their use in combating bacterial resistance. Microbiology Independent Research Journal (MIR Journal). 2019;6(1):37-42. https://doi.org/10.18527/2500-2236-2019-6-1-37-42

Просмотров: 102


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.


ISSN 2500-2236 (Online)