Preview

The selection pressure on the neuraminidase gene of influenza viruses isolated in Ukraine from 2009 to 2015

https://doi.org/10.18527/2500-2236-2019-6-1-60-69

Полный текст:

Аннотация

A broad range of naturally occurring antigenic variants of the influenza virus is caused by its rapid evolutionary variability. The survival of viable influenza virus variants occurs through natural selection. The treatment of influenza infection with modern antiviral drugs – neuraminidase (NA) inhibitors – leads to the occurrence of mutations in the NA gene, which thereby result in the emergence of virus resistance to these drugs. The goal of this study was to determine the selection pressure on the NA protein of influenza viruses isolated in Ukraine from 2009 to 2015. The main method for assessing the selection pressure on proteins is to quantify the ratio of substitution rates at nonsynonymous (dN) and synonymous (dS) sites. With the help of this method, we showed that only a few codons in the NA gene were under positive selection resulting in mutations at the following sites: for influenza A viruses of the A(H1N1)pdm09 subtype – site 40, for viruses of the A(H3N2) subtype – sites 93 and 402, for Influenza B viruses of the B/Yamagata lineage – sites 74, 99, and 268, and for the viruses of the B/Victoria lineage – sites 358, 288, and 455. These sites are not associated with the NA active site, transmembrane domain, or the antigenic sites of this protein. We concluded that NA inhibitors are not a significant factor in the process of selection of the influenza viruses in Ukraine because the sites associated with the resistance of influenza viruses to NA inhibitors were not affected by positive selection. This finding could be explained by the limited use of NA inhibitors for the treatment of influenza infections in Ukraine. 

Об авторах

S. V. Babii
L. V. Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
Украина

Kyiv



L. V. Leibenko
L. V. Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
Украина

Kyiv



L. V. Radchenko
L. V. Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
Украина

Kyiv



O. S. Golubka
L. V. Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
Украина

Kyiv



N. V. Teteriuk
L. V. Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
Украина

Kyiv



A. P. Mironenko
L. V. Gromashevsky Institute of Epidemiology and Infectious Diseases, NAMS of Ukraine
Украина

Kyiv



Список литературы

1. World Health Organization. Influenza Burden of disease. Available: https://www.who.int/influenza/surveillance_monitoring/bod/en/

2. Chow EJ, Doyle JD, Uyeki TM. Influenza virus-related critical illness: prevention, diagnosis, treatment. Crit Care. 2019; 23(1), 214. doi: 10.1186/s13054-019-2491-9.

3. Lazniewski M, Dawson WK, Szczepinska T, Plewczynski D. The structural variability of the influenza A hemagglutinin receptor-binding site. Brief Funct Genomics. 2018; 17(6), 415-27. doi: 10.1093/bfgp/elx042.

4. Shie JJ, Fang JM. Development of effective anti-influenza drugs: congeners and conjugates – a review. J Biomed Sci. 2019; 26(1), 84. doi: 10.1186/s12929-019-0567-0.

5. Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005; 353(13), 1363-73. doi: 10.1056/NEJMra050740.

6. Bantia S, Arnold CS, Parker CD, Upshaw R, Chand P. Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Res. 2006; 69(1), 39-45. doi: 10.1016/j.antiviral.2005.10.002.

7. Ishizuka H, Yoshiba S, Okabe H, Yoshihara K. Clinical pharmacokinetics of laninamivir, a novel long-acting neuraminidase inhibitor, after single and multiple inhaled doses of its prodrug, CS-8958, in healthy male volunteers. J Clin Pharmacol. 2010; 50(11), 1319-29. doi: 10.1177/0091270009356297.

8. Timofeeva TA, Asatryan MN, Altstein AD, Narodisky BS, Gintsburg AL, Kaverin NV. Predicting the Evolutionary Variability of the Influenza A Virus. Acta Naturae. 2017; 9(3), 48-54. PubMed PMID: 29104775.

9. Sunagawa S, Iha Y, Taira K, Okano S, Kinjo T, Higa F, et al. An Epidemiological Analysis of Summer Influenza Epidemics in Okinawa. Intern Med. 2016; 55(24), 3579-84. doi: 10.2169/internalmedicine.55.7107.

10. Shen J, Ma J, Wang Q. Evolutionary trends of A(H1N1) influenza virus hemagglutinin since 1918. PLoS One. 2009; 4(11), e7789. doi: 10.1371/journal.pone.0007789.

11. Janies DA, Voronkin IO, Studer J, Hardman J, Alexandrov BB, Treseder TW, et al. Selection for resistance to oseltamivir in seasonal and pandemic H1N1 influenza and widespread co-circulation of the lineages. Int J Health Geogr. 2010; 9, 13. doi: 10.1186/1476-072X-9-13.

12. Li W, Shi W, Qiao H, Ho SY, Luo A, Zhang Y, et al. Positive selection on hemagglutinin and neuraminidase genes of H1N1 influenza viruses. Virol J. 2011; 8, 183. doi: 10.1186/1743-422X-8-183.

13. Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000; 15(12), 496-503. doi: 10.1016/s0169-5347(00)01994-7.

14. Poon AF, Frost SD, Pond SL. Detecting signatures of selection from DNA sequences using Datamonkey. Methods Mol Biol. 2009; 537, 163-83. doi: 10.1007/978-1-59745-251-9_8.

15. Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care. 2019; 23(1), 258. doi: 10.1186/s13054-019-2539-x.

16. Zholobak NM, Mironenko AP, Shcherbakov AB, Shydlovska OA, Spivak MY, Radchenko LV, et al. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine. Antiviral Res. 2016; 127, 1-9. doi: 10.1016/j.antiviral.2015.12.013.

17. Baselga-Moreno V, Trushakova S, McNeil S, Sominina A, Nunes MC, Draganescu A, et al. Influenza epidemiology and influenza vaccine effectiveness during the 2016-2017 season in the Global Influenza Hospital Surveillance Network (GIHSN). BMC Public Health. 2019; 19(1), 487. doi: 10.1186/s12889-019-6713-5.

18. Shu B, Wu KH, Emery S, Villanueva J, Johnson R, Guthrie E, et al. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus. J Clin Microbiol. 2011; 49(7), 2614-9. doi: 10.1128/JCM.02636-10.

19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10), 2731-9. doi: 10.1093/molbev/msr121.

20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013; 30(12), 2725-9. doi:10.1093/molbev/mst197.

21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4), 406-25. doi: 10.1093/oxfordjournals.molbev.a040454.

22. Rambaut A. FigTree. 2014. v.1.4.2: tree drawing tool. [Accessed 16 Jun 2015]. Available: http://tree.bio.ed.ac.uk/software/figtree/

23. Nguyen HT, Fry AM, Gubareva LV. Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivir Ther. 2012; 17, 159-73. doi: 10.3851/IMP2067.

24. Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010; 26(19), 2455-7. doi: 10.1093/bioinformatics/btq429.

25. Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005; 22(5), 1208-22. doi: 10.1093/molbev/msi105.

26. Report prepared for the WHO annual consultation on the composition of influenza vaccine for the Southern Hemisphere, 23rd – 25th September 2013 // WHO Influenza Centre, London. Available: https://www.crick.ac.uk/sites/default/files/2018-07/nimr-reportsep2013final.pdf

27. Report prepared for the WHO annual consultation on the composition of influenza vaccine for the Northern Hemisphere 2015/16, 23rd – 25th February 2015 // WHO Influenza Centre, London. Available: https://www.crick.ac.uk/sites/default/files/2018-07/nimr-report-feb2015-web.pdf

28. Report prepared for the WHO annual consultation on the composition of influenza vaccine for the Southern Hemisphere, 22 – 24 September 2014 // WHO Influenza Centre, London. Available: https://www.crick.ac.uk/sites/default/files/2018-07/nimr-vcm-report-sep-14-web.pdf

29. Report prepared for the WHO annual consultation on the composition of influenza vaccine for the Southern Hemisphere, September 2010 // WHO Influenza Centre, London. Available: https://www.crick.ac.uk/partnerships/worldwide-influenza-centre/annualand-interim-reports

30. Report prepared for the WHO annual consultation on the composition of influenza vaccine for the Southern Hemisphere, 26th – 30th September 2011 // WHO Influenza Centre, London. Available: https://www.crick.ac.uk/sites/default/files/2018-07/interim-report-sep-2011.pdf

31. Report prepared for the WHO annual consultation on the composition of influenza vaccine for the Southern Hemisphere, 17th – 19th September 2012 // WHO Influenza Centre, London. Available: https://www.crick.ac.uk/sites/default/files/2018-07/interim_report_september_2012_2.pdf

32. Influenza Surveillance in New Zealand 2014 // Institute of Environmental Science and Research Ltd (ESR): Wellington, New Zealand, 18 June 2015, p. 95. Available: https://surv.esr.cri.nz/PDF_surveillance/Virology/FluAnnRpt/InfluenzaAnn2014.pdf

33. Belanov SS, Bychkov D, Benner C, Ripatti S, Ojala T, Kankainen M, et al. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates. Genome Biol Evol. 2015; 7(12), 3472-83. doi: 10.1093/gbe/evv240.

34. Agrawal AS, Sarkar M, Ghosh S, Roy T, Chakrabarti S, Lal R, et al. Genetic characterization of circulating seasonal Influenza A viruses (2005-2009) revealed introduction of oseltamivir resistant H1N1 strains during 2009 in eastern India. Infect Genet Evol. 2010; 10(8), 1188-98. doi: 10.1016/j.meegid.2010.07.019.

35. Mostafa A, Abdelwhab el SM, Slanina H, Hussein MA, Kuznetsova I, Schuttler CG, et al. Phylogenetic analysis of human influenza A/H3N2 viruses isolated in 2015 in Germany indicates significant genetic divergence from vaccine strains. Arch Virol. 2016; 161(6), 1505-15. doi: 10.1007/s00705-016-2815-x.

36. Horthongkham N, Athipanyasilp N, Pattama A, Kaewnapan B, Sornprasert S, Srisurapanont S, et al. Epidemiological, Clinical and Virological Characteristics of Influenza B Virus from Patients at the Hospital Tertiary Care Units in Bangkok during 2011-2014. PLoS One. 2016; 11(7), e0158244. doi: 10.1371/journal.pone.0158244.


Для цитирования:


Babii S.V., Leibenko L.V., Radchenko L.V., Golubka O.S., Teteriuk N.V., Mironenko A.P. The selection pressure on the neuraminidase gene of influenza viruses isolated in Ukraine from 2009 to 2015. Microbiology Independent Research Journal (MIR Journal). 2019;6(1):60-69. https://doi.org/10.18527/2500-2236-2019-6-1-60-69

For citation:


Babii S.V., Leibenko L.V., Radchenko L.V., Golubka O.S., Teteriuk N.V., Mironenko A.P. The selection pressure on the neuraminidase gene of influenza viruses isolated in Ukraine from 2009 to 2015. Microbiology Independent Research Journal (MIR Journal). 2019;6(1):60-69. https://doi.org/10.18527/2500-2236-2019-6-1-60-69

Просмотров: 18


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-2236 (Online)