Preview

Microbiology Independent Research Journal (MIR Journal)

Расширенный поиск

Mutations designed to modify the NS gene mRNA secondary structure affect influenza A pathogenicity in vivo

https://doi.org/10.18527/2500-2236-2021-8-1-1-9

Полный текст:

Аннотация

The influenza A virus genome consists of eight segments of negative-sense RNA that encode up to 18 proteins. During the process of viral replication, positive-sense (+)RNA (cRNA) or messenger RNA (mRNA) is synthesized. Today, there is only a partial understanding of the function of several secondary structures within vRNA and cRNA promoters, and splice sites in the M and NS genes. The most precise secondary structure of (+)RNA has been determined for the NS segment of influenza A virus.  
The influenza A virus NS gene features two regions with a conserved mRNA secondary structure located near splice sites. Here, we compared 4 variants of the A/Puerto Rico/8/1934 strain featuring different combinations of secondary structures at the NS segment (+)RNA regions 82-148 and 497-564. We found that RNA structures did not affect viral replication in cell culture. However, one of the viruses demonstrated lower NS1 and NEP expression levels during early stage cell infection as well as reduced pathogenicity in mice compared to other variants. In particular, this virus is characterized by an RNA hairpin in the 82-148 region and a stable hairpin in the 497-564 region.

Об авторах

I. L. Baranovskaya
Smorodintsev Research Institute of Influenza; Peter the Great St. Petersburg Polytechnic University
Россия

15/17, Prof. Popov str., Saint Petersburg, 197376;
29, Politehnicheskaya str., Saint Petersburg, 195251



M. V. Sergeeva
Smorodintsev Research Institute of Influenza
Россия

15/17, Prof. Popov str., Saint Petersburg, 197376



A. S. Taraskin
Smorodintsev Research Institute of Influenza; Peter the Great St. Petersburg Polytechnic University
Россия

15/17, Prof. Popov str., Saint Petersburg, 197376;
29, Politehnicheskaya str., Saint Petersburg, 195251



A. A. Lozhkov
Smorodintsev Research Institute of Influenza; Peter the Great St. Petersburg Polytechnic University
Россия

15/17, Prof. Popov str., Saint Petersburg, 197376;
29, Politehnicheskaya str., Saint Petersburg, 195251



A. V. Vasin
Smorodintsev Research Institute of Influenza; Peter the Great St. Petersburg Polytechnic University
Россия

15/17, Prof. Popov str., Saint Petersburg, 197376;
29, Politehnicheskaya str., Saint Petersburg, 195251



Список литературы

1. Brierley I, Gilbert RJC, Pennell S. RNA pseudoknots and the regulation of protein synthesis. Biochem Soc Trans 2008; 36(4), 684-689. doi: 10.1042/BST0360684.

2. Dela-Moss LI, Moss WN, Turner DH. Identification of conserved RNA secondary structures at influenza B and C splice sites reveals similarities and differences between influenza A, B, and C. BMC Res Notes 2014; 7(22), 1-12. doi: 10.1186/1756-0500-7-22.

3. Kieft JS. Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 2008; 33(6), 274-283. doi: 10.1016/j.tibs.2008.04.007.

4. Simon LM, Morandi E, Luganini A, Gribaudo G, Martinez-Sobrido L, Turner DH et al. In vivo analysis of influenza A mRNA secondary structures identifies critical regulatory motifs // Nucleic Acids Res 2019; 47(13), 7003-17. doi: 10.1093/nar/gkz318.

5. Martínez-Salas E, Ramos R, Lafuente E, López de Quinto S et al. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 2001; 82(5), 973-84. doi: 10.1099/0022-1317-82-5-973.

6. Martinez-Salas E, Francisco-Velilla R, FernandezChamorro J, Embarek AM. Insights into structural and mechanistic features of viral IRES elements. Front Microbiol 2018; 8(2629), 1-15. doi: 10.3389/fmicb.2017.02629.

7. Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region. Cell 1988; 55(3), 447-58. doi: 10.1016/0092-8674(88)90031-1.

8. Ten Dam EB, Pleij CWA, Bosch L. RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs. Virus Genes 1990; 4(2), 121-36. doi: 10.1007/BF00678404.

9. Clyde K, Harris E. RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 2006; 80(5), 2170-82. doi: 10.1128/JVI.80.5.2170-2182.2006.

10. Gultyaev AP, Fouchier RAM, Olsthoorn RCL. Influenza Virus RNA Structure: Unique and Common Features. Int Rev Immunol 2010; 29(6), 533-56. doi: 10.3109/08830185.2010.507828.

11. Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins. Virus Res 2014; 185, 53-63. doi: 10.1016/j.virusres.2014.03.015.

12. Piasecka J, Lenartowicz E, Soszynska-Jozwiak M, Szutkowska B, Kierzek R, Kierzek E. RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. Mol Ther Nucleic Acids 2020; 19, 627-42. doi: 10.1016/j.omtn.2019.12.018.

13. Chursov A, Kopetzky SJ, Leshchiner I, Kondofersky I, Theis FJ, Frishman D, Shneider A. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus. RNA Biol 2012; 9(10), 1266-74. doi: 10.4161/rna.22081.

14. Gultyaev AP, Heus HA, Olsthoorn RCL. An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics 2007; 23(3), 272-76. doi: 10.1093/bioinformatics/btl559.

15. Ilyinskii PO, Schmidt T, Lukashev D, Meriin AB, Thoidis G, Frishman D, Shneider AM. Importance of mRNA secondary structural elements for the expression of influenza virus genes. Omics 2009; 13(5), 421-30. doi: 10.1089/omi.2009.0036.

16. Moss WN, Priore SF, Turner DH. Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA 2011; 17(6), 991-1011. doi: 10.1261/rna.2619511.

17. Priore SF, Kierzek E, Kierzek R, Baman JR, Moss WN, Dela-Moss LI, Turner DH. Secondary structure of a conserved domain in the intron of influenza A NS1 mRNA. PLoS One 2013; 8(9), e70615. doi: 10.1371/journal.pone.0070615.

18. Krug RM. Functions of the influenza A virus NS1 protein in antiviral defense. Curr Opin Virol 2015; 12, 1-6. doi: 10.1016/j.coviro.2015.01.007.

19. Backström Winquist E, Abdurahman S, Tranell A, Lindström S, Tingsborg S, Schwartz S. Inefficient splicing of segment 7 and 8 mRNAs is an inherent property of influenza virus A/Brevig Mission/1918/1 (H1N1) that causes elevated expression of NS1 protein. Virology 2012; 422(1), 46-58. doi: 10.1016/j.virol.2011.10.004.

20. Neumann G, Hughes MT, Kawaoka Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 2000; 19(24), 6751-8. doi: 10.1093/emboj/19.24.6751.

21. Gao S, Wu J, Liu R-Y, Li J, Song L, Teng Y et al. Interaction of NS2 with AIMP2 Facilitates the Switch from Ubiquitination to SUMOylation of M1 in Influenza A Virus-Infected Cells. J Virol 2015; 89(1), 300-11. doi:10.1128/JVI.02170-14.

22. Chua MA, Schmid S, Perez JT, Langlois RA, ten Oever BR. Influenza A Virus Utilizes Suboptimal Splicing to Coordinate the Timing of Infection. Cell Rep 2013; 3(1), 23-9. doi: 10.1016/j.celrep.2012.12.010.

23. Paterson D, Fodor E. Emerging Roles for the Influenza A Virus Nuclear Export Protein (NEP). PLoS Pathog 2012; 8(12), e1003019. doi: 10.1371/journal.ppat.1003019.

24. Vasin AV, Petrova AV, Egorov VV, Plotnikova MA, Klotchenko SA, Karpenko MN, Kiselev OI. The influenza A virus NS genome segment displays lineagespecific patterns in predicted RNA secondary structure. BMC Res Notes 2016; 9(1), 1-7. doi: 10.1186/s13104-016-2083-6.

25. Gultyaev AP, Olsthoorn RCL. A family of non-classical pseudoknots in influenza A and B viruses. RNA Biol 2010; 7(2), 125-9. doi: 10.4161/rna.7.2.11287.

26. Baranovskaya I, Sergeeva M, Fadeev A, Kadirova R, Ivanova A, Ramsay E, Vasin A. Changes in RNA secondary structure affect NS1 protein expression during early stage influenza virus infection. Virol J 2019; 16(162), 1-8. doi: 10.1186/s12985-019-1271-0.

27. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA Websuite. Nucleic Acids Res 2008; 36(suppl_2), W70-W74. doi: 10.1093/nar/gkn188.

28. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27(3), 493-7. doi: 10.1093/oxfordjournals.aje.a118408.

29. Krivitskaya VZ, Sorokin EV, Tsareva TR, Sergeeva MV, Kadyrova RA, Romanovskaya-Roman’ko EA et al. Obtaining and characteristics of monoclonal antibody panel specific to NS1 protein of A Flu Virus. Biotekhnologiya 2017; 33(5), 61-72. doi: 10.21519/0234-2758-2017-33-5-61-72.

30. Gassmann M, Grenacher B, Rohde B, Vogel J. Quantifying Western blots: Pitfalls of densitometry. Electrophoresis 2009; 30(11), 1845-55. doi: 10.1002/elps.200800720.

31. Guide for the Care and Use of Laboratory Animals. Eighth Edition. National Research Council of the National Academies, National Academies Press, 2011.

32. Jiang T, Nogales A, Baker SF, Martinez-Sobrido L, Turner DH. Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture. PLoS One 2016; 11(6), e0156906. doi: 10.1371/journal.pone.0156906.

33. Lamb RA, Lai CJ, Choppin PW. Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci 1981; 78(7), 4170-4. doi: 10.1073/pnas.78.7.4170.

34. Huang X , Zheng M, Wang P, Wing-Yee Mok B, Liu S, Lau S-Y et al. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Nat Commun 2017; 8, 1-15. doi: 10.1038/ncomms14751.

35. Robb NC, Smith M, Vreede FT, Fodor E. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol 2009; 90(6), 1398-407. doi: 10.1099/vir.0.009639-0.

36. Vasin AV, Petrova-Brodskaya AV, Plotnikova MA, Tsvetkov VB, Klotchenko SA. Evolutionary dynamics of structural and functional domains of influenza a virus ns1 protein // Vopr Virusol 2017; 62(6), 246-58. doi: 10.18821/0507-4088-2017-62-6-246-258.

37. Kiyoko Iwatsuki-Horimoto, Taisuke Horimoto, Yutaka Fujii, and Yoshihiro Kawaoka. Generation of Influenza A Virus NS2 (NEP) Mutants with an Altered Nuclear Export Signal Sequence. J Virol 2004; 78(18), 10149-55. doi: 10.1128/JVI.78.18.10149–10155.2004.

38. Brower-Sinning R, Carter DM, Crevar CJ, Ghedin E, Ross TM, Benos PV. The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus. Genome Biol 2009; 10(2), R18. doi: 10.1186/gb-2009-10-2-r18.

39. van Mierlo JT, van Cleef KWR, van Rij RP. Small Silencing RNAs: Piecing Together a Viral Genome. Cell Host Microbe 2010; 7(2), 87-9. doi: 10.1016/j.chom.2010.02.001.


Для цитирования:


Baranovskaya I.L., Sergeeva M.V., Taraskin A.S., Lozhkov A.A., Vasin A.V. Mutations designed to modify the NS gene mRNA secondary structure affect influenza A pathogenicity in vivo. Microbiology Independent Research Journal (MIR Journal). 2021;8(1):1-9. https://doi.org/10.18527/2500-2236-2021-8-1-1-9

For citation:


Baranovskaya I.L., Sergeeva M.V., Taraskin A.S., Lozhkov A.A., Vasin A.V. Mutations designed to modify the NS gene mRNA secondary structure affect influenza A pathogenicity in vivo. Microbiology Independent Research Journal (MIR Journal). 2021;8(1):1-9. https://doi.org/10.18527/2500-2236-2021-8-1-1-9

Просмотров: 495


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-2236 (Online)