Microbiology Independent Research Journal (MIR Journal)

Расширенный поиск

Hypothesis: daptomycin permeabilizes membranes by forming self‑assembled nanotubes

Полный текст:


Daptomycin is the only lipopeptide antibiotic that is widely used in clinical practice. It was discovered by Eli Lilly and then studied and commercialized by Cubist Pharmaceuticals in 2003. Although this antibiotic has been used for 17 years, the debate over its mechanism of action is ongoing. In this paper, we discuss the different hypotheses on the mode of action of this antibiotic with a primary focus on the bacterial membrane permeabilization as the main mechanism of action. By comparing the experimental data on the oligomerization of daptomycin in membranes with properties of self-assembling cyclic peptides, we conclude that the structure of daptomycin oligomer should resemble the structures of peptide nanotubes that serve as ion channels in membranes.

Об авторе

A. Zhivich
Framingham State University
Соединённые Штаты Америки

Alexander Zhivich


Список литературы

1. Available at Accessed on 07/29/2020.

2. Dutton CJ, Haxell MA, McArthur HAI, Wax RG. Peptide antibiotics. Discovery, modes of action and application. Marcel Dekker, Inc., 2002. ISBN: 0-8247-0245-X.

3. Boto A, Pérez de la Lastra JM, González CC. The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. Molecules 2018; 23, 311-36. doi: 10.3390/molecules23020311.

4. Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40(6), 488-505. doi: 10.24272/j.issn.2095-8137.2019.062.

5. Browne K, Chakraborty S, Chen R, Willcox MD, Black DS, Walsh WR, et al. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int J Mol Sci 2020; 21(19), 7047. doi: 10.3390/ijms21197047.

6. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol 2019; 5(2), 117-37. doi: 10.3934/microbiol.2019.2.117.

7. Simões M, Lemos M, Simões LC. Phytochemicals Against Drug-Resistant Microbes. In Dietary Phytochemicals and Microbes, Patra AK (ed.). Springer Science+Business Media Dordrecht, 2012. Chapter 6, 185. doi: 10.1007/978-94-007-3926-0_6.

8. Kali A. Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: A brief review. Pharmacogn Rev 2015; 9(17), 29-34. doi: 10.4103/0973-7847.156329.

9. Patel S, Ahmed S, Eswari JS. Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World J Microbiol Biotechnol 2015; 31(8), 1177-93. doi: 10.1007/s11274-015-1880-8.

10. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010; 34(6), 1037-62. doi: 10.1111/j.1574-6976.2010.00221.x.

11. O’Connell KM, Hodgkinson JT, Sore HF, Welch M, Salmond GP, Spring DR. Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int Ed Engl 2013; 52(41), 10706-33. doi: 10.1002/anie.201209979.

12. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3), 238-50. doi: 10.1038/nrmicro1098.

13. Omardien S, Brul S, Zaat SA. Antimicrobial Activity of Cationic Antimicrobial Peptides against GramPositives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front Cell Dev Biol 2016; 4, 111. doi: 10.3389/fcell.2016.00111.

14. Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11, 73. doi: 10.3389/fnins.2017.00073.

15. Pollini S, Brunetti J, Sennati S, Rossolini GM, Bracci L, Pini A, et al. Synergistic activity profile of an antimicrobial peptide against multidrug-resistant and extensively drug-resistant strains of Gram-negative bacterial pathogens. J Pept Sci 2017; 23(4), 329-33. doi: 10.1002/psc.2978.

16. Wu X, Li Z, Li X, Tian Y, Fan Y, Yu C, et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Devel Ther 2017; 11, 939-46. doi: 10.2147/DDDT.S107195.

17. Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10, 2866. doi: 10.3389/fmicb.2019.02866.

18. Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018; 8(1), 4. doi: 10.3390/biom8010004.

19. Chan Tompkins NH, Harnicar SJ. Prescribing trends with daptomycin (cubicin) for the treatment of grampositive infections. P T. 2008; 33(5), 282-8. PubMed PMID: 19561791.

20. Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski A, 3rd, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 2010; 30(12), 1279-91. doi: 10.1592/phco.30.12.1279.

21. Kwa A, Kasiakou SK, Tam VH, Falagas ME. Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Rev Anti Infect Ther 2007; 5(5), 811- 21. doi: 10.1586/14787210.5.5.811.

22. Wenzel M, Rautenbach M, Vosloo JA, Siersma T, Aisenbrey CHM, Zaitseva E, et al. The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. mBio 2018; 9(5), e00802-18. doi: 10.1128/mBio.00802-18.

23. Gray DA, Wenzel M. More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel) 2020; 9(1), 17. doi: 10.3390/antibiotics9010017.

24. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47(8), 2538-44. doi: 10.1128/aac.47.8.2538-2544.2003.

25. Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev 2013; 26(4), 759-80. doi: 10.1128/CMR.00030-13.

26. Muraih JK, Pearson A, SilvermanJ, Palmer M. Oligomerization of daptomycin on membranes. Biochim Biophys Acta 2011; 1808(4), 1154-60. doi: 10.1016/j.bbamem.2011.01.001.

27. Zhang J, Scott WRP, Gabel F, Wu M, Desmond R, Bae J, et al. On the quest for the elusive mechanism of action of daptomycin: Binding, fusion, and oligomerization. Biochim Biophys Acta Proteins Proteom 2017; 1865(11 Pt B), 1490-9. doi: 10.1016/j.bbapap.2017.07.020.

28. Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem 2016; 24(24), 6253-68. doi: 10.1016/j.bmc.2016.05.052.

29. Taylor R, Butt K, Scott B, Zhang T, Muraih JK, Mintzer E, et al. Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145. Biochim Biophys Acta 2016; 1858(9), 1999-2005. doi: 10.1016/j.bbamem.2016.05.020.

30. Muraih JK, Palmer M. Estimation of the subunit stoichiometry of the membrane-associated daptomycin oligomer by FRET. Biochim Biophys Acta 2012; 1818(7), 1642-7. doi: 10.1016/j.bbamem.2012.02.019.

31. Chen YF, Sun TL, Sun Y, Huang HW. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry 2014; 53(33), 5384-92. doi: 10.1021/bi500779g.

32. Muller A, Wenzel M, Strahl H, Grein F, Saaki TNV, Kohl B, et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 2016; 113(45), E7077-86. doi: 10.1073/pnas.1611173113.

33. Grein F, Muller A, Scherer KM, Liu X, Ludwig KC, Klockner A, et al. Ca(2+)-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun 2020; 11(1), 1455. doi: 10.1038/s41467-020-15257-1.

34. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L. Characterization of the mechanisms of daptomycin resistance among Gram-positive bacterial pathogens by multidimensional lipidomics. mSphere 2017; 2, e00492-17. doi: 10.1128/mSphere.00492-17.

35. Huang HW. DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochim Biophys Acta Biomembr 2020; 1862(10), 183395. doi: 10.1016/j.bbamem.2020.183395.

36. Lee MT, Yang PY, Charron NE, Hsieh MH, Chang YY, Huang HW. Comparison of the Effects of Daptomycin on Bacterial and Model Membranes. Biochemistry 2018; 57(38), 5629-39. doi: 10.1021/acs.biochem.8b00818.

37. Seydlova G, Sokol A, Liskova P, Konopasek I, Fiser R. Daptomycin Pore Formation and Stoichiometry Depend on Membrane Potential of Target Membrane. Antimicrob Agents Chemother 2019; 63(1), e01589-18. doi: 10.1128/AAC.01589-18.

38. Su Z, Mrdenovic D, Sek S, Lipkowski J. Ionophore properties of valinomycin in the model bilayer lipid membrane 1. Selectivity toward a cation. J Solid State Electrochem 2020; 24, 3125-34. doi: 10.1007/s10008-020-04777-x.

39. Ross EE, Hoag B, Joslin I, Johnston T. Measurements of Ion Binding to Lipid-Hosted Ionophores by Affinity Chromatography. Langmuir 2019; 35(29), 9410-21. doi: 10.1021/acs.langmuir.9b01301.

40. Naumowicz M, Kotynska J, Petelska A, Figaszewski Z. Impedance analysis of phosphatidylcholine membranes modified with valinomycin. Eur Biophys J 2006; 35(3), 239-46. doi: 10.1007/s00249-005-0030-x.

41. Kelkar DA, Chattopadhyay A. The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 2007; 1768(9), 2011-25. doi: 10.1016/j.bbamem.2007.05.011.

42. Gumila C, Ancelin ML, Jeminet G, Delort AM, Miquel G, Vial HJ. Differential in vitro activities of ionophore compounds against Plasmodium falciparum and mammalian cells. Antimicrob Agents Chemother 1996; 40(3), 602-8. doi: 10.1128/AAC.40.3.602.

43. Jelokhani-Niaraki M, Hodges RS, Meissner JE, Hassenstein UE, Wheaton L. Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes. Biophys J 2008; 95(7), 3306-21. doi: 10.1529/biophysj.108.137471.

44. Zhang TH, Muraih JK, Mintzer E, Tishbi N, Desert C, Silverman J, et al. Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462. Biochimica et Biophysica Acta (BBA) – Biomembranes 2013; 1828 (2), 302-8. doi: 10.1016/j.bbamem.2012.10.008.

45. Zhang T, Muraih JK, MacCormick B, Silverman J, Palmer M. Daptomycin forms cation- and size-selective pores in model membranes. Biochim Biophys Acta 2014; 1838(10), 2425-30. doi: 10.1016/j.bbamem.2014.05.014.

46. Xing YH, Wang W, Dai SQ, Liu TY, Tan JJ, Qu GL, et al. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity. Acta Pharmacol Sin 2014; 35(2), 211-8. doi: 10.1038/aps.2013.159.

47. Zhang J, Scoten K, Straus SK. Daptomycin Leakage Is Selective. ACS Infect Dis 2016; 2(10), 682-7. doi: 10.1021/acsinfecdis.6b00152.

48. Straus SK, Hancock RE. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 2006; 1758(9), 1215-23. doi: 10.1016/j.bbamem.2006.02.009.

49. Lee MT, Hung WC, Hsieh MH, Chen H, Chang YY, Huang HW. Molecular State of the Membrane-Active Antibiotic Daptomycin. Biophys J 2017; 113(1), 82-90. doi: 10.1016/j.bpj.2017.05.025.

50. Muraih JK, Harris J, Taylor SD, Palmer M. Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta 2012; 1818(3), 673-8. doi: 10.1016/j.bbamem.2011.10.027.

51. Zhang T, Taylor SD, Palmer M, Duhamel J. Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. Biophys J 2016; 111(6), 1267-77. doi: 10.1016/j.bpj.2016.07.018.

52. Zhang T, Muraih JK, Tishbi N, Herskowitz J, Victor RL, Silverman J, et al. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J Biol Chem 2014; 289(17), 11584-91. doi: 10.1074/jbc.M114.554444.

53. Beriashvili D, Taylor R, Kralt B, Abu Mazen N, Taylor SD, Palmer M. Mechanistic studies on the effect of membrane lipid acyl chain composition on daptomycin pore formation. Chem Phys Lipids 2018; 216, 73-9. doi: 10.1016/j.chemphyslip.2018.09.015.

54. Gao X, Matsui H. Peptide-Based Nanotubes and Their Applications in Bionanotechnology. Adv Mater 2005; 17(17), 2037-50. doi: 10.1002/adma.200401849.

55. Lou S, Wang X, Yu Z, Shi L. Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Self-Assembly. Adv Sci (Weinh) 2019; 6(13), 1802043. doi: 10.1002/advs.201802043.

56. Ashkenasy N, Horne WS, Ghadiri MR. Design of selfassembling peptide nanotubes with delocalized electronic states. Small 2006; 2(1), 99-102. doi: 10.1002/ smll.200500252.

57. Kim HS, Hartgerink JD, and Ghadiri MR. Oriented Self-Assembly of Cyclic Peptide Nanotubes in Lipid Membranes. J Am Chem Soc 1998; 120, 4417-24. doi: 10.1021/ja9735315.

58. Insua I, Montenegro J. 1D to 2D Self Assembly of Cyclic Peptides. J Am Chem Soc 2020; 142(1), 300-7. doi: 10.1021/jacs.9b10582.

59. Rho JY, Cox H, Mansfield EDH, Ellacott SH, Peltier R, Brendel JC, et al. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nat Commun 2019; 10(1), 4708. doi: 10.1038/s41467-019-12586-8.

60. Ghadiri MR, Kobayashi K, Granja JR, Chadha RK, McRee DE. The Structural and Thermodynamic Basis for the Formation of Self-Assembled Peptide Nanotubes. Angewandte Chemie 1995; 34 (1), 93-5. doi: 10.1002/anie.199500931.

61. Shaikh H, Rho JY, Macdougall LJ, Gurnani P, Lunn AM, Yang J, et al. Hydrogel and Organogel Formation by Hierarchical Self-Assembly of Cyclic Peptides Nanotubes. Chemistry 2018; 24(71), 19066-74. doi: 10.1002/chem.201804576.

62. Mendez-Ardoy A, Granja JR, Montenegro J. pH-Triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horiz 2018; 3(4), 391-6. doi: 10.1039/c8nh00009c.

63. Khurana E, Nielsen SO, Ensing B, Klein ML. Selfassembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents. J Phys Chem B 2006; 110(38), 18965-72. doi: 10.1021/jp057471y.

64. Rodriguez-Vazquez N, Ozores HL, Guerra A, Gonzalez-Freire E, Fuertes A, Panciera M, et al. Membranetargeted self-assembling cyclic peptide nanotubes. Curr Top Med Chem 2014; 14(23), 2647-61. doi: 10.21 74/1568026614666141215143431.

65. Fischer L, Decossas M, Briand JP, Didierjean C, Guichard G. Control of duplex formation and columnar self-assembly with heterogeneous amide/urea macrocycles. Angew Chem Int Ed Engl 2009; 48(9), 1625-8. doi: 10.1002/anie.200804019.

66. Montenegro J, Ghadiri MR, Granja JR. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 2013; 46(12), 2955-65. doi: 10.1021/ar400061d.

67. Tarek M, Maigret B, Chipot C. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Biophys J 2003; 85(4), 2287-98. doi: 10.1016/S0006-3495(03)74653-0.

68. Motiei L, Rahimipour S, Thayer DA, Wong CH, Ghadiri MR. Antibacterial cyclic D,L-alpha-glycopeptides. Chem Commun (Camb) 2009; 25, 3693-5. doi: 10.1039/b902455g.

69. Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM. Self-assembly: from crystals to cells. Soft Matter 2009; 5, 1110-28. doi: 10.1039/b819321p.

70. Nguyen KT, He X, Alexander DC, Li C, Gu JQ, Mascio C, et al. Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother 2010; 54(4), 1404-13. doi: 10.1128/AAC.01307-09.

71. Chow HY, Po KHL, Gao P, Blasco P, Wang X, Li C, et al. Methylation of Daptomycin Leading to the Discovery of Kynomycin, a Cyclic Lipodepsipeptide Active against Resistant Pathogens. J Med Chem 2020; 63(6), 3161-71. doi: 10.1021/acs.jmedchem.9b01957.

72. Chow HY, Po KHL, Jin K, Qiao G, Sun Z, Ma W, et al. Establishing the Structure-Activity Relationship of Daptomycin. ACS Med Chem Lett 2020; 11(7), 1442- 9. doi: 10.1021/acsmedchemlett.0c00175.

73. Lin D, Lam HY, Han W, Cotroneo N, Pandya BA, Li X. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position. Bioorg Med Chem Lett 2017; 27(3), 456-9. doi: 10.1016/j.bmcl.2016.12.046.

74. Moreira R, Barnawi G, Beriashvili D, Palmer M, Taylor SD. The effect of replacing the ester bond with an amide bond and of overall stereochemistry on the activity of daptomycin. Bioorg Med Chem 2019; 27(1), 240-6. doi: 10.1016/j.bmc.2018.12.004.

75. Siedlecki J, Hill J, Parr I, Yu X, Morytko M, Zhang Y, et al. Array synthesis of novel lipodepsipeptide. Bioorg Med Chem Lett 2003; 13(23), 4245-9. doi: 10.1016/j.bmcl.2003.07.025.

Для цитирования:

Zhivich A. Hypothesis: daptomycin permeabilizes membranes by forming self‑assembled nanotubes. Microbiology Independent Research Journal (MIR Journal). 2020;7(1):59-71.

For citation:

Zhivich A. Hypothesis: daptomycin permeabilizes membranes by forming self‑assembled nanotubes. Microbiology Independent Research Journal (MIR Journal). 2020;7(1):59-71.

Просмотров: 141

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.

ISSN 2500-2236 (Online)