Enhanced CD8+ T-cell response in mice immunized with NS1-truncated influenza virus

Полный текст:


Influenza viruses with truncated NS1 protein stimulate a more intensive innate immune response compared to their wild type counterparts. Here, we investigate how the shortening of the NS1 protein influence the immunogenicity of the conserved T-cellular epitopes of influenza virus. Using flow cytometry, we showed that the intraperitoneal immunization of mice with influenza virus encoding 124 N-terminal amino acid residues of the NS1 protein (A/PR8/NS124) induced higher levels of CD8+ T-cells recognizing immunodominant (NP366-374) and sub-immunodominant (NP161-175, NP196-210, HA323-337, HA474-483, NA427-433) epitopes compared to immunization with the virus expressing full-length NS1 (A/PR8/full NS). It is noteworthy that the response to the immunodominant influenza epitope NP366-374 was achieved with the lower immunization dose of A/PR8/NS124 virus compared to the reference wild type strain. Despite the fact that polyfunctional CD8+ effector memory T-lymphocytes simultaneously producing two (IFNγ and TNFα) or three (IFNγ, IL2, and TNFα) cytokines prevailed in the immune response to both viruses, the relative number of such T-cells was higher in A/PR8/NS124-immunized mice. Furthermore, we have found that polyfunctional populations of lymphocytes generated upon the immunization of mice with the mutant virus demonstrated an increased capacity to produce IFNγ compared to the corresponding populations derived from the A/PR8/full NS-immunized mice. Therefore, immunization with the attenuated influenza virus encoding truncated NS1 protein ensures a more potent CD8+ T-cell immune response.

Об авторах

K. A. Vasilyev
Smorodintsev Research Institute of Influenza

Kirill Vasilyev 

St. Petersburg

A.-P. S. Shurygina
Smorodintsev Research Institute of Influenza

St. Petersburg

M. A. Stukova
Smorodintsev Research Institute of Influenza

St. Petersburg

A. Y. Egorov
Smorodintsev Research Institute of Influenza; University of Natural Resources and Life Sciences

St. Petersburg

Vienna, Austria

Список литературы

1. Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 2012; 12(1), 36-44. doi: 10.1016/S1473-3099(11)70295-X.

2. Ni Y, Guo J, Turner D, Tizard I. An Improved Inactivated Influenza Vaccine with Enhanced Cross Protection. Front Immunol 2018; 9, 1815. doi: 10.3389/fimmu.2018.01815.

3. Koutsakos M, Illing PT, Nguyen THO, Mifsud NA, Crawford JC, Rizzetto S, et al. Human CD8(+) T cell cross-reactivity across influenza A, B and C viruses. Nat Immunol 2019; 20(5), 613-25. doi: 10.1038/s41590-019-0320-6.

4. Ohmit SE, Victor JC, Rotthoff JR, Teich ER, Truscon RK, Baum LL, et al. Prevention of antigenically drifted influenza by inactivated and live attenuated vaccines. N Engl J Med 2006; 355(24), 2513-22. doi: 10.1056/NEJMoa061850.

5. Egorov A, Brandt S, Sereinig S, Romanova J, Ferko B, Katinger D, et al. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 1998; 72(8), 6437-41. PubMed PMID: 9658085.

6. Ayllon J, Garcia-Sastre A. The NS1 protein: a multitasking virulence factor. Curr Top Microbiol Immunol 2015; 386, 73-107. doi: 10.1007/82_2014_400.

7. Ferko B, Stasakova J, Romanova J, Kittel C, Sereinig S, Katinger H, et al. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 2004; 78(23), 13037- 45. doi: 10.1128/JVI.78.23.13037-13045.2004.

8. Romanova J, Krenn BM, Wolschek M, Ferko B, Romanovskaja-Romanko E, Morokutti A, et al. Preclinical evaluation of a replication-deficient intranasal DeltaNS1 H5N1 influenza vaccine. PLoS One 2009; 4(6), e5984.

9. Steel J, Lowen AC, Pena L, Angel M, Solorzano A, Albrecht R, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol 2009; 83(4), 1742-53. doi: 10.1128/JVI.01920-08.

10. Vasilyev KA, Yukhneva MA, Shurygina A-PS, Stukova MA, Egorov AY. Enhancement of the immunogenicity of influenza A virus by the inhibition of immunosuppressive function of NS1 protein. MIR J 2018; 5(1), 48-58. doi: 10.18527/2500-2236-2018-5-1-48-58.

11. Kannanganat S, Ibegbu C, Chennareddi L, Robinson HL, Amara RR. Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J Virol 2007; 81(16), 8468-76. doi: 10.1128/JVI.00228-07.

12. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 2007; 204(6), 1405-16. doi: 10.1084/jem.20062363.

13. Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 2011; 17(2), 189-94. doi: 10.1038/nm.2285.

14. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007; 13(7), 843- 50. doi: 10.1038/nm1592.

15. Cox MA, Kahan SM, Zajac AJ. Anti-viral CD8 T cells and the cytokines that they love. Virology 2013; 435(1), 157-69. doi: 10.1016/j.virol.2012.09.012.

16. Reading PC, Whitney PG, Pickett DL, Tate MD, Brooks AG. Influenza viruses differ in ability to infect macrophages and to induce a local inflammatory response following intraperitoneal injection of mice. Immunol Cell Biol 2010; 88(6), 641-50. doi: 10.1038/icb.2010.11.

17. Salomon R, Hoffmann E, Webster RG. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci U S A 2007; 104(30), 12479-81. doi: 10.1073/pnas.0705289104.

18. Guide for the care and use of laboratory animals, Eighth Edition. National Research Council, National Academies Press; 2010.

19. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27(3), 493-7. doi: 10.1093/oxfordjournals.aje.a118408.

20. Larsen M, Sauce D, Arnaud L, Fastenackels S, Appay V, Gorochov G. Evaluating cellular polyfunctionality with a novel polyfunctionality index. PLoS One 2012; 7(7), e42403. doi: 10.1371/journal.pone.0042403.

21. Gras S, Kedzierski L, Valkenburg SA, Laurie K, Liu YC, Denholm JT, et al. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc Natl Acad Sci U S A 2010; 107(28), 12599-604. doi: 10.1073/pnas.1007270107.

22. Quinones-Parra S, Loh L, Brown LE, Kedzierska K, Valkenburg SA. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014; 5, 285. doi: 10.3389/fmicb.2014.00285.

23. Valkenburg SA, Gras S, Guillonneau C, La Gruta NL, Thomas PG, Purcell AW, et al. Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold. PLoS Pathog 2010; 6(8), e1001039. doi: 10.1371/journal.ppat.1001039.

24. Chen L, Zanker D, Xiao K, Wu C, Zou Q, Chen W. Immunodominant CD4+ T-cell responses to influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein. J Virol 2014; 88(20), 11760-73. doi: 10.1128/JVI.01631-14.

25. Crowe SR, Miller SC, Brown DM, Adams PS, Dutton RW, Harmsen AG, et al. Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine 2006; 24(4), 457-67. doi: 10.1016/j.vaccine.2005.07.096.

26. Nayak JL, Richards KA, Chaves FA, Sant AJ. Analyses of the specificity of CD4 T cells during the primary immune response to influenza virus reveals dramatic MHC-linked asymmetries in reactivity to individual viral proteins. Viral Immunol 2010; 23(2), 169-80. doi: 10.1089/vim.2009.0099.

27. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 2008; 205(3), 711-23. doi: 10.1084/jem.20071140.

28. Terajima M, Babon JA, Co MD, Ennis FA. Cross-reactive human B cell and T cell epitopes between influenza A and B viruses. Virol J 2013; 10, 244. doi: 10.1186/1743-422X-10-244.

29. Kees U, Kynast G, Weber E, Krammer PH. A method for testing the specificity of influenza A virus-reactive memory cytotoxic T lymphocyte (CTL) clones in limiting dilution cultures. J Immunol Methods 1984; 69(2), 215-27. doi: 10.1016/0022-1759(84)90320-x.

30. Zweerink HJ, Courtneidge SA, Skehel JJ, Crumpton MJ, Askonas BA. Cytotoxic T cells kill influenza virus infected cells but do not distinguish between serologically distinct type A viruses. Nature 1977; 267(5609), 354-6. doi: 10.1038/267354a0.

31. Kannanganat S, Kapogiannis BG, Ibegbu C, Chennareddi L, Goepfert P, Robinson HL, et al. Human immunodeficiency virus type 1 controllers but not noncontrollers maintain CD4 T cells coexpressing three cytokines. J Virol 2007; 81(21), 12071-6. Epub 2007/08/31. doi: 10.1128/JVI.01261-07.

32. Aagaard C, Hoang TT, Izzo A, Billeskov R, Troudt J, Arnett K, et al. Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31 against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One 2009; 4(6), e5930. doi: 10.1371/journal.pone.0005930.

33. Lindenstrom T, Agger EM, Korsholm KS, Darrah PA, Aagaard C, Seder RA, et al. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 2009; 182(12), 8047-55. doi: 10.4049/jimmunol.0801592.

34. Trieu MC, Zhou F, Lartey SL, Sridhar S, Mjaaland S, Cox RJ. Augmented CD4(+) T-cell and humoral responses after repeated annual influenza vaccination with the same vaccine component A/H1N1pdm09 over 5 years. NPJ Vaccines 2018; 3, 37. doi: 10.1038/s41541-018-0069-1.

35. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 2008; 8(4), 247-58. doi: 10.1038/nri2274.

36. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006; 107(12), 4781-9. doi: 10.1182/blood-2005-12-4818.

37. Sandberg JK, Fast NM, Nixon DF. Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes. J Immunol 2001; 167(1), 181-7. doi: 10.4049/jimmunol.167.1.181.

38. Lichterfeld M, Yu XG, Waring MT, Mui SK, Johnston MN, Cohen D, et al. HIV-1-specific cytotoxicity is preferentially mediated by a subset of CD8(+) T cells producing both interferon-gamma and tumor necrosis factor-alpha. Blood 2004; 104(2), 487-94. doi: 10.1182/blood-2003-12-4341.

39. Kandasamy M, Suryawanshi A, Tundup S, Perez JT, Schmolke M, Manicassamy S, et al. RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection. PLoS Pathog 2016; 12(7), e1005754. doi: 10.1371/journal.ppat.1005754.

40. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 2009; 10(5), 524-30. doi: 10.1038/ni.1718.

41. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci U S A 2012; 109(18), 7037-42. doi: 10.1073/pnas.1202288109.

42. Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY, et al. T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissuewide pathogen alert. Science 2014; 346(6205), 101-5. doi: 10.1126/science.1254803.

43. Schenkel JM, Fraser KA, Vezys V, Masopust D. Sensing and alarm function of resident memory CD8(+) T cells. Nat Immunol 2013; 14(5), 509-13. doi: 10.1038/ni.2568.

44. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 2011; 187(11), 5510-4. doi: 10.4049/jimmunol.1102243.

45. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 2014; 95(2), 215-24. doi: 10.1189/jlb.0313180.

46. Wakim LM, Smith J, Caminschi I, Lahoud MH, Villadangos JA. Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunol 2015; 8(5), 1060-71. doi: 10.1038/mi.2014.133.

47. Zens KD, Chen JK, Farber DL. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 2016; 1(10), e85832. doi: 10.1172/jci.insight.85832.

48. Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, et al. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity 2016; 44(6), 1379-91. doi: 10.1016/j.immuni.2016.05.006.

Для цитирования:

Vasilyev K.A., Shurygina A.S., Stukova M.A., Egorov A.Y. Enhanced CD8+ T-cell response in mice immunized with NS1-truncated influenza virus. Microbiology Independent Research Journal (MIR Journal). 2020;7(1):24-33.

For citation:

Vasilyev K.A., Shurygina A.S., Stukova M.A., Egorov A.Y. Enhanced CD8+ T-cell response in mice immunized with NS1-truncated influenza virus. Microbiology Independent Research Journal (MIR Journal). 2020;7(1):24-33.

Просмотров: 28

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2500-2236 (Online)