Preview

Detection and identification of wheat and barley phytopathogens in the Russian Federation

https://doi.org/10.18527/2500-2236-2020-7-1-13-23

Полный текст:

Аннотация

Grain export is an important branch of the food business in the Russian Federation. The countries of Europe, Asia, Africa, and South America are importers of Russian grain. Each importing country has its own requirements for the phytosanitary condition of imported products. One important requirement for importers is the absence of pathogens that can cause bacterial diseases of grain crops, such as Pectobacterium rhapontici, Rathayibacter tritici, Pseudomonas fuscovaginae, Pseudomonas syringae pvs., Acidovorax avenae subsp. avenae, Xanthomonas translucens pvs., Rathayibacter rathayi, and Pseudomonas cichorii. Reliable information on the distribution of these bacterial strains in the Russian Federation is limited. Methods for the isolation and identification of these bacterial pathogens have not been developed to date, which increases the risk of the spread of phytopathogens that could cause significant economic harm to agriculture.
The purpose of this study was to isolate and identify the causative agents of bacterial diseases of wheat and barley. In order to do this, we collected samples of plant material of wheat and barley in the Rodionovo-Nesvetaysky, Myasnikovsky, Zernogradsky, Azovsky, and Martynovsky districts of the Rostov Oblast. Various bacterial strains were isolated from the obtained samples using the appropriate cultural media. The strains were tested by polymerase chain reaction (PCR) using primers designed for the 16S ribosomal RNA (PSF/PSR and 8UA/519B) and SyD1/SyD2 primers selected for the Pseudomonas syringae genome (GenBank CP047267.1) with subsequent sequencing according to the Sanger method. As a result, the following bacterial strains were isolated and identified from wheat and barley samples: Curtobacterium sp., Paenibacillus sp., Enterobacteriaceae, Pseudomonas azotoformans, P. poae, P. azotoformans, P. hibiscicola, P. fluorescens, Stenotrophomonas sp., P. syringae pv. syringae, P. syringae pv. atrofaciens, Bacillus sp., Erwinia sp., Pantoea sp., and Pantoea agglomerans.

Об авторе

O. Y. Slovareva
Russian State Agrarian University – Moscow Agricultural Academy named after K. A. Timiryazev; All-Russian Plant Quarantine Center
Россия

Olga Slovareva 


Moscow


Bykovo, Moscow Oblast



Список литературы

1. The development of Russian exports. Russian export center. https://www.exportcenter.ru/international_markets/russian_exports/?sphrase_id=116943.

2. European and Mediterranean Plant Protection Organization (EPPO) Global database, 2020. Available: https://gd.eppo.int.

3. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzeby J, Tindall BJ. Taxonomic Outline of the Bacteria and Archaea, Release 7.7, 2007. Part 5 – The Bacteria: Phylum “Proteobacteria”, Class Gammaproteobacteria, pp. 148-245. Available: http://taxonomicoutline.org/content/7/7/148/pdf.

4. Baek KY, Lee HH, Son GJ, Lee PA, Roy N, Seo YS, Lee SW. Specific and Sensitive Primers Developed by Comparative Genomics to Detect Bacterial Pathogens in Grains. Plant Pathol J 2018; 34(2), 104-112. doi: 10.5423/PPJ.OA.11.2017.0250.

5. Phyto requirements Bangladesh, 2015. Ministry of Bangladesh Foreign Affairs, MOFA/Europe/EE/ Russia/216/15(022). Available: http://www.fsvps.ru/fsvps-docs/ru/importExport/bangladesh/files/phyto_requirements_bangladesh.pdf.

6. Patel HK, da Silva DP, Devescovi G, Maraite H, Paszkiewicz K, Studholme DJ, Venturi V. Draft Genome Sequence of Pseudomonas fuscovaginae, a Broad-HostRange Pathogen of Plants. Journal of Bacteriology 2012; 194(10), 2765-2766. doi: 10.1128/JB.00341-12.

7. Wheat, part 1: General principles for wheat (triticum aestivum l.). Egyptian Organization for Standards & Quality (EOS), Standard No. 1601-1, 2010.

8. Patel HK, Matiuzzo M, Bertani I, Bigirimana VdeP, Ash GJ, Höfte M, Venturi V. Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiology 2014; 14, 274. doi: 10.1186/s12866-014-0274-7.

9. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzeby J, Tindall BJ. Taxonomic Outline of the Bacteria and Archaea, Release 7.7, 2007. Part 4 – The Bacteria: Phylum “Proteobacteria”, Class Betaproteobacteria, pp. 112-147. Available: http://taxonomicoutline.org/content/7/7/112/pdf.

10. Xie G, Zhang G, Liu H, Lou M, Tian W, Li B, Zhou X, Zhu B, Jin G. Genome Sequence of the Rice-Pathogenic Bacterium Acidovorax avenae subsp. avenae RS-1. Journal of Bacteriology. 2011; 193(18), 5013-14. doi: 10.1128/JB.05594-11.

11. Chu N, Zhou JR, Fu HY, Huang MT, Zhang HL, Gao SJ. Global Gene Responses of Resistant and Susceptible Sugarcane Cultivars to Acidovorax avenae subsp. avenae Identified Using Comparative Transcriptome Analysis settings. Microorganisms 2020; 8(1), 10. doi: 10.3390/microorganisms8010010.

12. Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. Royal Society Open Science 2019; 6(9), 190369. doi: 10.1098/rsos.190369.

13. Komatsu H, Shirakawa T, Uchiyama T, Hoshino T. Chemical structure of cichorinotoxin, a cyclic lipodepsipeptide that is produced by Pseudomonas cichorii and causes varnish spots on lettuce. Beilstein J Org Chem 2019; 15, 299-309. doi: 10.3762/ bjoc.15.27.

14. Boosalis MG. The epidemiology of Xanthomonas translucens on cereals and grasses. Phytopathology 1952; 42, 387-395.

15. Sands DS, Fourest E. Xanthomonas campestris pv. translucens in North and South America and in the Middle East. Bulletin OEPP/EPPO 1989; 19(1), 127- 130. doi: 10.1111/j.1365-2338.1989.tb00138.x.

16. Wichmann F, Vorhölter F, Hersemann L, Widmer F, Blom J, Niehaus K, et al. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. Mol Plant Pathol 2013; 14(6), 576-88. doi: 10.1111/mpp.12030.

17. Giovanardi D, Sutton SA, Stefani E, Walcott RR. Factors influencing the detection of Acidovorax citrulli in naturally contaminated cucurbitaceous seeds by PCR-based assays. Seed Science and Technology 2018; 46(1), 93-106. doi: 10.15258/sst.2018.46.1.09.

18. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975; 94(3), 441-8. doi: 10.1016/0022-2836(75)90213-2.

19. Basic Local Alignment Search Tool, 2020. Available: https://blast.ncbi.nlm.nih.gov.

20. Kazempour MN, Kheyrgoo M, Pedramfar H, Rahimian H. Isolation and identification of bacterial glum blotch and leaf blight on wheat (Triticum aestivum L.) in Iran. African Journal of Biotechnology 2009; 9(20), 2860-2865.

21. Daffonchio D, Cherif A, Brusetti L, Rizzi A, Mora D, Boudabous A, et al. Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera. Appl Environ Microbiol 2003; 69(9), 5128-37. doi: 10.1128/aem.69.9.5128-5137.2003.

22. Gorshkov V. Yu. Plant bacteriosis: molecular basis for the formation of plant-microbial pathosystems. Kazan: Publishing house of Sergei Buzukin; 2017 (In Russian).

23. Green ER, Mecsas J. Bacterial Secretion Systems – An Overview. Microbiol Spectr 2016; 4(1), 1-19. doi: 10.1128/microbiolspec.VMBF-0012-2015.

24. El Qaidi S, Scott NE, Hays MP, Geisbrecht BV, Watkins S, Hardwidge PR. An intra-bacterial activity for a T3SS effector. Sci Rep 2020; 10(1), 1073. doi: 10.1038/s41598-020-58062-y.


Для цитирования:


Slovareva O.Y. Detection and identification of wheat and barley phytopathogens in the Russian Federation. Microbiology Independent Research Journal (MIR Journal). 2020;7(1):13-23. https://doi.org/10.18527/2500-2236-2020-7-1-13-23

For citation:


Slovareva O.Y. Detection and identification of wheat and barley phytopathogens in the Russian Federation. Microbiology Independent Research Journal (MIR Journal). 2020;7(1):13-23. https://doi.org/10.18527/2500-2236-2020-7-1-13-23

Просмотров: 81


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-2236 (Online)