Microbiology Independent Research Journal (MIR Journal)

Advanced search

Drug development and open access: approaches and perspectives


The development of a new medicine is a process that requires enormous time and tremendous financing. It takes 10-15 years from the discovery of an active compound to the launch of its production and the start of drug marketing with the total costs of the project reaching 1.8 billion US dollars. These large time and financial costs stem from repeated testing and elimination of a large percentage of compounds over the course of screening at each stage of preclinical and clinical trials. Many investors have lost interest in financing new drug discovery projects (or pharmaceutical start-up companies) due to the high risk and extensive time required to produce a return on investments. Since all the research data are considered confidential by pharmaceutical companies and thus never shared with scientific community, different scientific groups waste significant resources repeating the same costly experiments in drug discovery. In this article, we discuss new approaches to drug discovery involving open access to the research data and alternative financing that could significantly streamline the search for new cures for human diseases.

About the Authors

D. V. Debabov
NovaBay Pharmaceuticals, Inc.
United States
Emeryville, CA

M. D. Debabova
Scientific electronic library eLIBRARY
Russian Federation

Maria Debabova



1. Arshad Z, Smith J, Roberts M, Lee WH, Davies B, Bure K, et al. Open Access Could Transform Drug Discovery: A Case Study of JQ1. Expert Opin Drug Discov. 2016; 11(3), 321-32. doi: 10.1517/17460441.2016.1144587.

2. Lee WH. Open access target validation is a more efficient way to accelerate drug discovery. PLoS Biol. 2015; 13(6), e1002164. doi: 10.1371/journal.pbio.1002164.

3. Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, et al. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase. J Med Chem. 2017; 60(5), 1876-91. doi: 10.1021/acs.jmedchem.6b01645.

4. Deane CM, Wall ID, Green DV, Marsden BD, Bradley AR. WONKA and OOMMPPAA: analysis of protein-ligand interaction data to direct structure-based drug design. Acta Crystallogr D Struct Biol. 2017; 73(3), 279-85. doi: 10.1107/S2059798316009529.

5. Drug Discovery in Cancer Epigenetics (Translational Epigenetics Series). 1st ed. G. Egger, P. Arimondo (eds.). Elsevier, 2016. doi: 10.1016/C2014-0-02189-2.

6. Litterman NK, Rhee M, Swinney DC, and Ekins S. Collaboration for rare disease drug discovery research [version 1; referees: 2 approved]. F1000Research. 2014; 3, 261. doi: 10.12688/f1000research.5564.1.

7. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017; 45(D1), D985-D994. doi: 10.1093/nar/gkw1055.

8. Cooper MA. A community-based approach to new antibiotic discovery. Nat Rev Drug Discov. 2015; 14(9), 587-8. doi: 10.1038/nrd4706.

9. Hansford KA, Blaskovich MA, Cooper MA. Chemical philanthropy: a path forward for antibiotic discovery? Future Med Chem. 2016; 8(9), 925-9. doi: 10.4155/fmc-2016-0029.

10. O’Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem. 2008; 51(10), 2871-8. doi: 10.1021/jm700967e.

11. Desselle MR, Neale R, Hansford KA, Zuegg J, Elliott AG, Cooper MA, Blaskovich MA. Institutional profile: Community for Open Antimicrobial Drug Discovery - crowdsourcing new antibiotics and antifungals. Future Sci OA. 2017; 3(2), FSO171. doi: 10.4155/fsoa-2016-0093.

12. US Supreme Court says human DNA cannot be patented.


For citations:

Debabov D.V., Debabova M.D. Drug development and open access: approaches and perspectives. Microbiology Independent Research Journal (MIR Journal). 2018;5(1):32-35. (In Russ.)

Views: 151

ISSN 2500-2236 (Online)