Live poultry vaccines against highly pathogenic avian influenza viruses

Полный текст:


The widespread circulation of highly pathogenic avian influenza viruses (HPAIVs) and their occasional transmission to humans creates a constant pandemic threat and leads to significant economic losses in the poultry industry. The development of an effective and safe vaccine for the broad protection of poultry from H5N1 HPAIVs remains an important goal. Prevention of the virus transmission between ducks and chickens is important for the efficient control of the spread of avian influenza. The oral administration of live vaccines corresponds to the natural route of infection that leads to virus replication in the intestinal epithelial cells that cause a well-balanced and broad immune response providing protection against the viruses of distant clades. The broad protection is the important advantage of live-attenuated influenza vaccines when compared to inactivated ones. Here, we give an overview of the latest approaches and results in the development of live poultry vaccine candidates against HPAIVs.

Об авторах

E. Boravleva
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences

A. Gambaryan
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences

Alexandra Gambaryan


Список литературы

1. Kapczynski DR, Pantin-Jackwood MJ, Spackman E, Chrzastek K, Suarez DL, Swayne DE. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade highly pathogenic avian influenza viruses. Vaccine 2017; 35(46), 6345-53. doi: 10.1016/j.vaccine.2017.04.042.

2. Swayne DE. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis 2012; 56(4 Suppl), 818-28. doi: 10.1637/10183-041012-Review.1.

3. Chen H. Avian influenza vaccination: the experience in China. Rev Sci Tech 2009; 28(1), 267-74. PubMed PMID: 19618631.

4. Spackman E, Swayne DE. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: current questions and new technology. Virus Res 2013; 178(1), 121-32. doi: 10.1016/j.virusres.2013.03.004.

5. Swayne DE, Spackman E, Pantin-Jackwood M. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface. Ecohealth 2014; 11(1), 94-108. doi: 10.1007/s10393-013-0861-3.

6. Bertran K, Moresco K, Swayne DE. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay. Vaccine 2015; 33(11), 1324-30. doi: 10.1016/j.vaccine.2015.01.055.

7. Nguyen TH, Than VT, Thanh HD, Nguyen VQ, Nguyen KH, Nguyen DT, et al. The evolutionary dynamics of highly pathogenic avian influenza H5N1 in south-central Vietnam reveals multiple clades evolving from Chinese and Cambodian viruses. Comp Immunol Microbiol Infect Dis 2015; 42, 21-30. doi: 10.1016/j.cimid.2015.08.001.

8. Herve PL, Lorin V, Jouvion G, Da Costa B, Escriou N. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology 2015; 486, 134-45. doi: 10.1016/j.virol.2015.08.033.

9. Wei Y, Qi L, Gao H, Sun H, Pu J, Sun Y, et al. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Sci Rep 2016; 6, 30382. doi: 10.1038/srep30382.

10. Kim JK, Kayali G, Walker D, Forrest HL, Ellebedy AH, Griffin YS, et al. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc Natl Acad Sci USA 2010; 107(24), 11044-9. doi: 10.1073/pnas.1006419107.

11. Tian G, Zeng X, Li Y, Shi J, Chen H. Protective efficacy of the H5 inactivated vaccine against different highly pathogenic H5N1 avian influenza viruses isolated in China and Vietnam. Avian Dis 2010; 54(1 Suppl), 287- 9. doi: 10.1637/8707-031709-ResNote.1.

12. El-Zoghby EF, Arafa AS, Kilany WH, Aly MM, Abdelwhab EM, Hafez HM. Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt. Virol J 2012; 9, 294. doi: 10.1186/1743-422X-9-294.

13. Kreijtz JH, Bodewes R, van Amerongen G, Kuiken T, Fouchier RA, Osterhaus AD, et al. Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine 2007; 25(4), 612-20. doi: 10.1016/j.vaccine.2006.08.036.

14. Jiang WM, Wang SC, Liu HL, Yu JM, Du X, Hou GY, et al. Evaluation of avian influenza virus isolated from ducks as a potential live vaccine candidate against novel H7N9 viruses. Vaccine 2014; 32(48), 6433-9. doi: 10.1016/j.vaccine.2014.09.050.

15. Li C, Bu Z, Chen H. Avian influenza vaccines against H5N1 ‘bird flu’. Trends Biotechnol 2014; 32(3), 147- 56. doi: 10.1016/j.tibtech.2014.01.001.

16. Cornelissen LA, de Leeuw OS, Tacken MG, Klos HC, de Vries RP, de Boer-Luijtze EA, et al. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice. PLoS One 2012; 7(8), e44447. doi: 10.1371/journal.pone.0044447.

17. Zou Z, Hu Y, Liu Z, Zhong W, Cao H, Chen H, et al. Efficient strategy for constructing duck enteritis virusbased live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Vet Res 2015; 46, 42. doi: 10.1186/s13567-015-0174-3.

18. Rauw F, Palya V, Gardin Y, Tatar-Kis T, Dorsey KM, Lambrecht B, et al. Efficacy of rHVT-AI vector vaccine in broilers with passive immunity against challenge with two antigenically divergent Egyptian clade 2.2.1 HPAI H5N1 strains. Avian Dis 2012; 56(4 Suppl), 913- 22. doi: 10.1637/10172-041012-Reg.1.

19. Kapczynski DR, Esaki M, Dorsey KM, Jiang H, Jackwood M, Moraes M, et al. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus. Vaccine 2015; 33(9), 1197-205. doi: 10.1016/j.vaccine.2014.12.028.

20. Kilany WH, Hassan MK, Safwat M, Mohammed S, Selim A, Von Dobschuetz S, et al. Comparison of the effectiveness of rHVT-H5, inactivated H5 and rHVT-H5 with inactivated H5 prime/boost vaccination regimes in commercial broiler chickens carrying MDAs against HPAI H5N1 clade 2.2.1 virus. Avian Pathol 2015; 44(5), 333-41. doi: 10.1080/03079457.2015.1053840.

21. Pantin-Jackwood MJ, Kapczynski DR, DeJesus E, Costa-Hurtado M, Dauphin G, Tripodi A, et al. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus). Avian Dis 2016; 60(1), 22-32. doi: 10.1637/11282-091615-Reg.1.

22. Tang N, Zhang Y, Pedrera M, Chang P, Baigent S, Moffat K, et al. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine 2018; 36(5), 716- 22. doi: 10.1016/j.vaccine.2017.12.025.

23. Romer-Oberdorfer A, Veits J, Helferich D, Mettenleiter TC. Level of protection of chickens against highly pathogenic H5 avian influenza virus with Newcastle disease virus based live attenuated vector vaccine depends on homology of H5 sequence between vaccine and challenge virus. Vaccine 2008; 26(19), 2307-13. doi: 10.1016/j.vaccine.2008.02.061.

24. Kim SH, Paldurai A, Xiao S, Collins PL, Samal SK. Modified Newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens. Vaccine 2014; 32(35), 4428-35. doi: 10.1016/j.vaccine.2014.06.061.

25. Liu Q, Mena I, Ma J, Bawa B, Krammer F, Lyoo YS, et al. Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. J Virol 2015; 89(14), 7401-8. doi: 10.1128/JVI.00031-15.

26. Kim SH, Paldurai A, Samal SK. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus. Virology 2017; 503, 31-6. doi: 10.1016/j.virol.2017.01.006.

27. Ma J, Lee J, Liu H, Mena I, Davis AS, Sunwoo SY, et al. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus. NPJ Vaccines 2017; 2, 33. doi: 10.1038/s41541-017-0034-4.

28. Kamble NM, Hyoung KJ, Lee JH. Intracellular delivery of HA1 subunit antigen through attenuated Salmonella Gallinarum act as a bivalent vaccine against fowl typhoid and low pathogenic H5N3 virus. Vet Res 2017; 48(1), 40. doi: 10.1186/s13567-017-0446-1.

29. Kim JH, Hajam IA, Lee JH. Oral immunization with a novel attenuated Salmonella Typhimurium encoding influenza HA, M2e and NA antigens protects chickens against H7N9 infection. Vet Res 2018; 49(1), 12. doi: 10.1186/s13567-018-0509-y.

30. Steel J. New strategies for the development of H5N1 subtype influenza vaccines: progress and challenges. BioDrugs. 2011; 25(5), 285-98. doi: 10.2165/11593870-000000000-00000.

31. Jang H, Ngunjiri JM, Lee CW. Association between Interferon Response and Protective Efficacy of NS1- Truncated Mutants as Influenza Vaccine Candidates in Chickens. PLoS One 2016; 11(6), e0156603. doi: 10.1371/journal.pone.0156603.

32. Hai R, Martinez-Sobrido L, Fraser KA, Ayllon J, Garcia-Sastre A, Palese P. Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J Virol 2008; 82(21), 10580-90. doi: 10.1128/JVI.01213-08.

33. Wang L, Suarez DL, Pantin-Jackwood M, Mibayashi M, Garcia-Sastre A, Saif YM, et al. Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as a live influenza vaccine in poultry. Vaccine 2008; 26(29-30), 3580-6. doi: 10.1016/j.vaccine.2008.05.001.

34. Steel J, Lowen AC, Pena L, Angel M, Solorzano A, Albrecht R, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol 2009; 83(4), 1742-53. doi: 10.1128/JVI.01920-08.

35. Wang L, Yassine H, Saif YM, Lee CW. Developing live attenuated avian influenza virus in ovo vaccines for poultry. Avian Dis 2010; 54(1 Suppl), 297-301. doi: 10.1637/8623-012309-ResNote.1.

36. Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, et al. Cross-clade protective immune responses of NS1- truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2016; 34(3), 350-7. doi: 10.1016/j.vaccine.2015.11.045.

37. Choi EH, Song MS, Park SJ, Pascua PN, Baek YH, Kwon HI, et al. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene. Arch Virol 2015; 160(7), 1729-40. doi: 10.1007/s00705-015-2442-y.

38. Chen S, Zhu Y, Yang D, Yang Y, Shi S, Qin T, et al. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses. Front Microbiol 2017; 8, 1086. doi: 10.3389/fmicb.2017.01086.

39. Suguitan AL, Jr., McAuliffe J, Mills KL, Jin H, Duke G, Lu B, et al. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 2006; 3(9), e360. doi: 10.1371/journal.pmed.0030360.

40. Lee JS, Kim HS, Seo SH. Genetic characterization and protective immunity of cold-adapted attenuated avian H9N2 influenza vaccine. Vaccine 2008; 26(51), 6569-76. doi: 10.1016/j.vaccine.2008.09.043.

41. Song H, Nieto GR, Perez DR. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J Virol 2007; 81(17), 9238-48. doi: 10.1128/JVI.00893-07.

42. Nang NT, Song BM, Kang YM, Kim HM, Kim HS, Seo SH. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both highly pathogenic H5N1 and H9N2 influenza viruses. Influenza Other Respir Viruses 2013; 7(2), 120- 31. doi: 10.1111/j.1750-2659.2012.00363.x.

43. Pena L, Sutton T, Chockalingam A, Kumar S, Angel M, Shao H, et al. Influenza viruses with rearranged genomes as live-attenuated vaccines. J Virol 2013; 87(9), 5118-27. doi: 10.1128/JVI.02490-12.

44. Rohrs S, Kalthoff D, Beer M. A model for early onset of protection against lethal challenge with highly pathogenic H5N1 influenza virus. Vaccine 2014; 32(22), 2631-6. doi: 10.1016/j.vaccine.2014.03.019.

45. Murphy BR, Sly DL, Tierney EL, Hosier NT, Massicot JG, London WT, et al. Reassortant virus derived from avian and human influenza A viruses is attenuated and immunogenic in monkeys. Science 1982; 218(4579), 1330-2. PubMed PMID: 6183749.

46. Subbarao K, Webster RG, Kawaoka Y, Murphy BR. Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses? Virus Res 1995; 39(2-3), 105-18. PubMed PMID: 8837878.

47. Crawford JM, Garcia M, Stone H, Swayne D, Slemons R, Perdue ML. Molecular characterization of the hemagglutinin gene and oral immunization with a waterfowl-origin avian influenza virus. Avian Dis 1998; 42(3), 486-96. PubMed PMID: 9777149.

48. Wu R, Guan Y, Yang Z, Chen J, Wang H, Chen Q, et al. A live bivalent influenza vaccine based on a H9N2 virus strain. Vaccine 2010; 28(3), 673-80. doi: 10.1016/j.vaccine.2009.10.102.

49. Boravleva EY, Lomakina NF, Gambaryan AS. Isolation of influenza A viruses from birds on ponds of Moscow. Kazarka 2012; 15, 13-30 (in Russian).

50. Boravleva EY, Chvala IA, Lomakina NF, et al. Testing of apathogenic wild duck H5N3 influenza virus as poultry live anti-H5N1 vaccine. Vopr Virusol 2015; 60(4), 44-49 (in Russian). PubMed PMID: 26665435.

51. Lomakina NF, Gambaryan AS, Boravleva EY, et al. Character of Apathogenic Influenza A Viruses Found in Moscow, Russia. Mol Genet Microbiol Virol 2009, 24, 37-45. doi: 10.3103/S0891416809010078.

52. Lomakina NF, Boravleva EY, Kropotkina EA, et al. Attenuation of A/Chicken/Kurgan/3/2005 (H5N1) Influenza Virus Using Selection in an Environment Simulating the Life Cycle of Wild Duck Viruses. Mol Genet Microbiol Virol 2011; 26, 132–139. doi: 10.3103/S0891416811030025.

53. Boravleva EY, Lomakina NF, Kropotkina EA, et al. The generation and characteristics of reassortant influenza A virus with H5 hemagglutinin and other genes from apathogenic virus H6N2. Vopr Virusol 2011; 56(6), 9-14 (in Russian). PubMed PMID: 22359942.

54. Gambaryan AS, Lomakina NF, Boravleva EY, Kropotkina EA, Mashin VV, Krasilnikov IV, et al. Comparative safety, immunogenicity, and efficacy of several antiH5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine). Influenza Other Respir Viruses 2012;6(3), 188-95. doi: 10.1111/j.1750-2659.2011.00291.x.

55. Suguitan AL, Jr., Marino MP, Desai PD, Chen LM, Matsuoka Y, Donis RO, et al. The influence of the multibasic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A H5N1 cold-adapted vaccine virus. Virology 2009; 395(2), 280-8. doi: 10.1016/j.virol.2009.09.017.

56. Gambaryan AS, Boravleva EY, Lomakina NF, Kropotkina EA, Gordeychuk IV, Chvala IA, et al. Immunization with live nonpathogenic H5N3 duck influenza virus protects chickens against highly pathogenic H5N1 virus. Acta Virol 2016; 60(3), 316-27. PubMed PMID: 27640442.

57. Gambaryan AS, Gordeychuk IV, Boravleva EY, et al. Immunization of domestic ducks with live nonpathogenic H5N3 influenza virus prevents shedding and transmission of highly pathogenic H5N1 virus to chickens. Viruses 2018; 10(4), 164. doi: 10.3390/v10040164.

58. van der Goot JA, de Jong MC, Koch G, Van Boven M. Comparison of the transmission characteristics of low and high pathogenicity avian influenza A virus (H5N2). Epidemiol Infect 2003; 131(2), 1003-13. doi: 10.1017/S0950268803001067.

59. Deshpande KL, Fried VA, Ando M, Webster RG. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci USA 1987; 84(1), 36-40. PubMed PMID: 3467357.

60. Ito T, Goto H, Yamamoto E, Tanaka H, Takeuchi M, Kuwayama M, et al. Generation of a highly pathogenic avian influenza A virus from an avirulent field isolate by passaging in chickens. J Virol 2001; 75(9), 4439-43. doi: 10.1128/JVI.75.9.4439-4443.2001.

Для цитирования:

Boravleva E., Gambaryan A. Live poultry vaccines against highly pathogenic avian influenza viruses. Microbiology Independent Research Journal (MIR Journal). 2018;5(1):22-28.

For citation:

Boravleva E., Gambaryan A. Live poultry vaccines against highly pathogenic avian influenza viruses. Microbiology Independent Research Journal (MIR Journal). 2018;5(1):22-28.

Просмотров: 66

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2500-2236 (Online)