Preview

The problem of bacterial complications post respiratory viral infections

https://doi.org/10.18527/2500-2236-2018-5-1-12-21

Полный текст:

Аннотация

Every person over the course of their lifetime is repeatedly infected by a variety of respiratory viruses that represent risk factors for the development of bacterial complications. The most dangerous among the etiological factors of acute respiratory viral diseases is the influenza A virus. This virus is capable of causing catastrophic pandemics with high mortality mainly due to secondary bacterial pneumonia. As has been shown in numerous recent studies, the main mechanism of provoking bacterial infections irrespective of the type of respiratory virus is the imbalanced response of the antiviral innate immunity – excessive interferon response and uncontrolled inflammation. The probability of severe bacterial complications in the course of acute respiratory viral infections is determined by both the virulence of the virus itself and by the composition of the respiratory microbiota at the time of the viral infection as well as by the genetic characteristics of the organism. The occurrence of severe bacterial complications is also affected by the chronic diseases that have an impact on the regulation of the innate immune response. This review summarizes the current concept of the mechanisms of the development of post viral bacterial complications as well as the potential prevention strategies for these complications.

Об авторе

A. Egorov
University of Natural Resources and Life Sciences; Mechnikov Research Institute for Vaccines and Sera
Австрия

Andrej Egorov

Vienna

Moscow



Список литературы

1. Battle against Respiratory Viruses (BRaVe) initiative. World Health Organization. Available: http://www.who.int/influenza/patient_care/clinical/brave/en/#; http://www.who.int/mediacentre/factsheets/fs211/en/

2. Kilbourne ED. Influenza pandemics of the 20th century. Emerg Infect Dis 2006; 12(1), 9-14. doi: 10.3201/eid1201.051254.

3. Cheng VC, To KK, Tse H, Hung IF, Yuen KY. Two years after pandemic influenza A/2009/H1N1: what have we learned? Clin Microbiol Rev 2012; 25(2), 223-63. doi: 10.1128/CMR.05012-11.

4. Oxford JS, Sefton A, Jackson R, Innes W, Daniels RS, Johnson NP. World War I may have allowed the emergence of “Spanish” influenza. Lancet Infect Dis 2002; 2(2), 111-4. PubMed PMID: 11901642.

5. Brem WV, Bolling GE, Casper EJ. Pandemic ‘influenza’ and secondary pneumonia at Camp Fremont Calif. J Am Med Assoc 1918; 71, 2138-44. doi: 10.1001/jama.1918.26020520007010b.

6. Taubenberger JK, Baltimore D, Doherty PC, Markel H, Morens DM, Webster RG, et al. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. MBio 2012; 3(5). doi: 10.1128/mBio.00201-12.

7. Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. Front Microbiol 2017; 8, 1041. doi: 10.3389/fmicb.2017.01041.

8. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198(7), 962-70. doi: 10.1086/591708.

9. Chien YW, Klugman KP, Morens DM. Bacterial pathogens and death during the 1918 influenza pandemic. N Engl J Med 2009; 361(26), 2582-3. doi: 10.1056/NEJMc0908216.

10. Brundage JF, Shanks GD. Deaths from bacterial pneumonia during 1918-19 influenza pandemic. Emerg Infect Dis 2008; 14(8), 1193-9. doi: 10.3201/eid1408.071313.

11. Win MK, Chen MI, Barkham T, Lin C, Tan A, Lin R, et al. Influenza disease burden in adults by subtypes following the initial epidemic of pandemic H1N1 in Singapore. Influenza Other Respir Viruses 2011; 5(6), e563-7. doi: 10.1111/j.1750-2659.2011.00282.x.

12. Potter CW. A history of influenza. J Appl Microbiol 2001; 91(4), 572-9. PubMed PMID: 11576290.

13. Viboud C, Simonsen L, Fuentes R, Flores J, Miller MA, Chowell G. Global Mortality Impact of the 1957-1959 Influenza Pandemic. J Infect Dis 2016; 213(5), 738- 45. doi: 10.1093/infdis/jiv534.

14. Eickhoff TC, Sherman IL, Serfling RE. Observations on excess mortality associated with epidemic influenza. JAMA 1961; 176, 776-82. PubMed PMID: 13726091.

15. Hilleman MR. Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 2002; 20(25-26), 3068-87. PubMed PMID: 12163258.

16. Hers JF, Masurel N, Mulder J. Bacteriology and histopathology of the respiratory tract and lungs in fatal Asian influenza. Lancet 1958; 2(7057), 1141-3. PubMed PMID: 13612141.

17. Gill JR, Sheng ZM, Ely SF, Guinee DG, Beasley MB, Suh J, et al. Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch Pathol Lab Med 2010; 134(2), 235-43. doi: 10.1043/1543-2165-134.2.235.

18. Petersdorf RG, Fusco JJ, Harter DH, Albrink WS. Pulmonary infections complicating Asian influenza. AMA Arch Intern Med 1959; 103(2), 262-72. PubMed PMID: 13616762.

19. Robertson L, Caley JP, Moore J. Importance of Staphylococcus aureus in pneumonia in the 1957 epidemic of influenza A. Lancet 1958; 2(7040), 233-6. PubMed PMID: 13564806.

20. Michaelis M, Doerr HW, Cinatl J, Jr. Novel swine-origin influenza A virus in humans: another pandemic knocking at the door. Med Microbiol Immunol 2009; 198(3), 175-83. doi: 10.1007/s00430-009-0118-5.

21. Klimov A, Simonsen L, Fukuda K, Cox N. Surveillance and impact of influenza in the United States. Vaccine 1999; 17 Suppl 1, S42-6. PubMed PMID: 10471179.

22. Tillett HE, Smith JW, Gooch CD. Excess deaths attributable to influenza in England and Wales: age at death and certified cause. Int J Epidemiol 1983; 12(3), 344-52. PubMed PMID: 6629624.

23. Lindsay MI, Jr., Herrmann EC, Jr., Morrow GW, Jr., Brown AL, Jr. Hong Kong influenza: clinical, microbiologic, and pathologic features in 127 cases. JAMA 1970; 214(10), 1825-32. PubMed PMID: 5537337.

24. Wang TT, Palese P. Unraveling the mystery of swine influenza virus. Cell 2009; 137(6), 983-5. doi: 10.1016/j.cell.2009.05.032.

25. Chertow DS, Memoli MJ. Bacterial coinfection in influenza: a grand rounds review. JAMA 2013; 309(3), 275-82. doi: 10.1001/jama.2012.194139.

26. Lee EH, Wu C, Lee EU, Stoute A, Hanson H, Cook HA, et al. Fatalities associated with the 2009 H1N1 influenza A virus in New York city. Clin Infect Dis 2010; 50(11), 1498-504. doi: 10.1086/652446.

27. Lucas S. Predictive clinicopathological features derived from systematic autopsy examination of patients who died with A/H1N1 influenza infection in the UK 2009-10 pandemic. Health Technol Assess 2010; 14(55), 83-114. doi: 10.3310/hta14550-02.

28. Palacios G, Hornig M, Cisterna D, Savji N, Bussetti AV, Kapoor V, et al. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS One 2009; 4(12), e8540. doi: 10.1371/journal.pone.0008540.

29. Randolph AG, Vaughn F, Sullivan R, Rubinson L, Thompson BT, Yoon G, et al. Critically ill children during the 2009-2010 influenza pandemic in the United States. Pediatrics 2011; 128(6), e1450-8. doi: 10.1542/peds.2011-0774.

30. Zhivich A. Fighting bacterial resistance: approaches, challenges, and opportunities in the search for new antibiotics. Part 1. Antibiotics used in clinical practice: mechanisms of action and the development of bacterial resistance. MIR J 2017; 4(1), 31-51. doi: 10.18527/2500-2236-2017-4-1-31-51.

31. Hasvold J, Sjoding M, Pohl K, Cooke C, Hyzy RC. The role of human metapneumovirus in the critically ill adult patient. J Crit Care 2016; 31(1), 233-7. doi: 10.1016/j.jcrc.2015.09.035.

32. Kwon YS, Park SH, Kim MA, Kim HJ, Park JS, Lee MY, et al. Risk of mortality associated with respiratory syncytial virus and influenza infection in adults. BMC Infect Dis 2017; 17(1), 785. doi: 10.1186/s12879-017-2897-4.

33. Prasso JE, Deng JC. Postviral Complications: Bacterial Pneumonia. Clin Chest Med 2017; 38(1), 127-38. doi: 10.1016/j.ccm.2016.11.006.

34. Metersky ML, Masterton RG, Lode H, File TM, Jr., Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis 2012; 16(5), e321-31. doi: 10.1016/j.ijid.2012.01.003.

35. Mulcahy ME, McLoughlin RM. Staphylococcus aureus and Influenza A Virus: Partners in Coinfection. MBio 2016; 7(6). doi: 10.1128/mBio.02068-16.

36. Safaeyan F, Nahaei MR, Seifi SJ, Kafil HS, Sadeghi J. Quantitative detection of Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae in patients with new influenza A (H1N1)/2009 and influenza A/2010 virus infection. GMS Hyg Infect Control 2015; 10, Doc06. doi: 10.3205/dgkh000249.

37. Jennings LC, Anderson TP, Beynon KA, Chua A, Laing RT, Werno AM, et al. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax 2008; 63(1), 42-8. doi: 10.1136/thx.2006.075077.

38. Liderot K, Ahl M, Ozenci V. Secondary bacterial infections in patients with seasonal influenza A and pandemic H1N1. Biomed Res Int 2013; 2013, 376219. doi: 10.1155/2013/376219.

39. Chonmaitree T, Jennings K, Golovko G, Khanipov K, Pimenova M, Patel JA, et al. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS One 2017; 12(7), e0180630. doi: 10.1371/journal.pone.0180630.

40. Jacobs JH, Viboud C, Tchetgen ET, Schwartz J, Steiner C, Simonsen L, et al. The association of meningococcal disease with influenza in the United States, 1989-2009. PLoS One 2014; 9(9), e107486. doi: 10.1371/journal.pone.0107486.

41. Brealey JC, Chappell KJ, Galbraith S, Fantino E, Gaydon J, Tozer S, et al. Streptococcus pneumoniae colonization of the nasopharynx is associated with increased severity during respiratory syncytial virus infection in young children. Respirology 2018; 23(2), 220-7. doi: 10.1111/resp.13179.

42. Hendaus MA, Jomha FA, Alhammadi AH. Virus-induced secondary bacterial infection: a concise review. Ther Clin Risk Manag 2015; 11, 1265-71. doi: 10.2147/TCRM.S87789.

43. Louie JK, Roy-Burman A, Guardia-Labar L, Boston EJ, Kiang D, Padilla T, et al. Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr Infect Dis J 2009; 28(4), 337-9. doi: 10.1097/INF.0b013e31818ffc1b.

44. Mallia P, Footitt J, Sotero R, Jepson A, Contoli M, Trujillo-Torralbo MB, et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186(11), 1117-24. doi: 10.1164/rccm.201205-0806OC.

45. Kloepfer KM, Lee WM, Pappas TE, Kang TJ, Vrtis RF, Evans MD, et al. Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations. J Allergy Clin Immunol 2014; 133(5), 1301-7, 7 e1-3. doi: 10.1016/j.jaci.2014.02.030.

46. Korppi M, Leinonen M, Makela PH, Launiala K. Bacterial involvement in parainfluenza virus infection in children. Scand J Infect Dis 1990; 22(3), 307-12. PubMed PMID: 2164707.

47. Verkaik NJ, Nguyen DT, de Vogel CP, Moll HA, Verbrugh HA, Jaddoe VW, et al. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect 2011; 17(12), 1840-4. doi: 10.1111/j.1469-0691.2011.03480.x.

48. Self WH, Williams DJ, Zhu Y, Ampofo K, Pavia AT, Chappell JD, et al. Respiratory Viral Detection in Children and Adults: Comparing Asymptomatic Controls and Patients With Community-Acquired Pneumonia. J Infect Dis 2016; 213(4), 584-91. doi: 10.1093/infdis/jiv323.

49. Katsurada N, Suzuki M, Aoshima M, Yaegashi M, Ishifuji T, Asoh N, et al. The impact of virus infections on pneumonia mortality is complex in adults: a prospective multicentre observational study. BMC Infect Dis 2017; 17(1), 755. doi: 10.1186/s12879-017-2858-y.

50. Jung HS, Kang BJ, Ra SW, Seo KW, Jegal Y, Jun JB, et al. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection. Tuberc Respir Dis (Seoul) 2017; 80(4), 358-67. doi: 10.4046/trd.2017.0044.

51. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012; 336(6086), 1268-73. doi: 10.1126/science.1223490.

52. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184(8), 957-63. doi: 10.1164/rccm.201104-0655OC.

53. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4(3), 144-54. doi: 10.1016/S1473-3099(04)00938-7.

54. Bosch AA, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013; 9(1), e1003057. doi: 10.1371/journal.ppat.1003057.

55. Yang X, Steukers L, Forier K, Xiong R, Braeckmans K, Van Reeth K, et al. A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One 2014; 9(10), e110026. doi: 10.1371/journal.pone.0110026.

56. Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, Ulett GC, et al. Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell typedependent manner. J Virol 2006; 80(4), 1629-36. doi: 10.1128/JVI.80.4.1629-1636.2006.

57. Li N, Ren A, Wang X, Fan X, Zhao Y, Gao GF, et al. Influenza viral neuraminidase primes bacterial coinfection through TGF-beta-mediated expression of host cell receptors. Proc Natl Acad Sci U S A 2015; 112(1), 238-43. doi: 10.1073/pnas.1414422112.

58. Carson JL, Collier AM, Hu SS. Acquired ciliary defects in nasal epithelium of children with acute viral upper respiratory infections. N Engl J Med 1985; 312(8), 463-8. doi: 10.1056/NEJM198502213120802.

59. Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2010; 42(4), 450-60. doi: 10.1165/rcmb.2007-0417OC.

60. Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 2008; 14(5), 558- 64. doi: 10.1038/nm1765.

61. Shahangian A, Chow EK, Tian X, Kang JR, Ghaffari A, Liu SY, et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 2009; 119(7), 1910-20. doi: 10.1172/JCI35412.

62. Nakamura S, Davis KM, Weiser JN. Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J Clin Invest 2011; 121(9), 3657- 65. doi: 10.1172/JCI57762.

63. Kudva A, Scheller EV, Robinson KM, Crowe CR, Choi SM, Slight SR, et al. Influenza A inhibits Th17- mediated host defense against bacterial pneumonia in mice. J Immunol 2011; 186(3), 1666-74. doi: 10.4049/jimmunol.1002194.

64. Tian X, Xu F, Lung WY, Meyerson C, Ghaffari AA, Cheng G, et al. Poly I:C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria. PLoS One 2012; 7(9), e41879. doi: 10.1371/ journal.pone.0041879.

65. Astry CL, Jakab GJ. Influenza virus-induced immune complexes suppress alveolar macrophage phagocytosis. J Virol 1984; 50(2), 287-92. PubMed PMID: 6708169.

66. Franke-Ullmann G, Pfortner C, Walter P, Steinmuller C, Lohmann-Matthes ML, Kobzik L, et al. Alteration of pulmonary macrophage function by respiratory syncytial virus infection in vitro. J Immunol 1995; 154(1), 268-80. PubMed PMID: 7995946.

67. Jakab GJ. Immune impairment of alveolar macrophage phagocytosis during influenza virus pneumonia. Am Rev Respir Dis 1982; 126(5), 778-82. doi: 10.1164/arrd.1982.126.5.778.

68. Warnking K, Klemm C, Loffler B, Niemann S, van Kruchten A, Peters G, et al. Super-infection with Staphylococcus aureus inhibits influenza virus-induced type I IFN signalling through impaired STAT1- STAT2 dimerization. Cell Microbiol 2015; 17(3), 303- 17. doi: 10.1111/cmi.12375.

69. de Steenhuijsen Piters WA, Heinonen S, Hasrat R, Bunsow E, Smith B, Suarez-Arrabal MC, et al. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection. Am J Respir Crit Care Med 2016; 194(9), 1104-15. doi: 10.1164/rccm.201602-0220OC.

70. Jia L, Xie J, Zhao J, Cao D, Liang Y, Hou X, et al. Mechanisms of Severe Mortality-Associated Bacterial Co-infections Following Influenza Virus Infection. Front Cell Infect Microbiol 2017; 7, 338. doi: 10.3389/fcimb.2017.00338.

71. Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ, Decker T, et al. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 2013; 340(6137), 1230-4. doi: 10.1126/science.1233632.

72. Lee LN, Dias P, Han D, Yoon S, Shea A, Zakharov V, et al. A mouse model of lethal synergism between influenza virus and Haemophilus influenzae. Am J Pathol 2010; 176(2), 800-11. doi: 10.2353/ajpath.2010.090596.

73. McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 2014; 12(4), 252-62. doi: 10.1038/nrmicro3231.

74. Tripathi S, Garcia-Sastre A. Antiviral innate immunity through the lens of systems biology. Virus Res 2016; 218, 10-7. doi: 10.1016/j.virusres.2015.11.024.

75. Brennan K, Bowie AG. Activation of host pattern recognition receptors by viruses. Curr Opin Microbiol 2010; 13(4), 503-7. doi: 10.1016/j.mib.2010.05.007.

76. Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. Host Immune Response to Influenza A Virus Infection. Front Immunol 2018; 9, 320. doi: 10.3389/fimmu.2018.00320.

77. Shim JM, Kim J, Tenson T, Min JY, Kainov DE. Influenza Virus Infection, Interferon Response, Viral Counter-Response, and Apoptosis. Viruses 2017; 9(8), 223. doi: 10.3390/v9080223.

78. Andreakos E, Salagianni M, Galani IE, Koltsida O. Interferon-lambdas: Front-Line Guardians of Immunity and Homeostasis in the Respiratory Tract. Front Immunol 2017; 8, 1232. doi: 10.3389/fimmu.2017.01232.

79. Goritzka M, Durant LR, Pereira C, Salek-Ardakani S, Openshaw PJ, Johansson C. Alpha/beta interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection. J Virol 2014; 88(11), 6128- 36. doi: 10.1128/JVI.00333-14.

80. Doherty PC, Turner SJ, Webby RG, Thomas PG. Influenza and the challenge for immunology. Nat Immunol 2006; 7(5), 449-55. doi: 10.1038/ni1343.

81. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 2004; 363(9409), 617-9. doi: 10.1016/S0140-6736(04)15595-5.

82. Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol 2017; 8, 259. doi: 10.3389/fimmu.2017.00259.

83. Srivastava B, Blazejewska P, Hessmann M, Bruder D, Geffers R, Mauel S, et al. Host genetic background strongly influences the response to influenza a virus infections. PLoS One 2009; 4(3), e4857. doi: 10.1371/journal.pone.0004857.

84. Davidson S, Crotta S, McCabe TM, Wack A. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat Commun 2014; 5, 3864. doi: 10.1038/ncomms4864.

85. Broers CJ, Gemke RJ, Weijerman ME, van der Sluijs KF, van Furth AM. Increased pro-inflammatory cytokine production in Down Syndrome children upon stimulation with live influenza A virus. J Clin Immunol 2012; 32(2), 323-9. doi: 10.1007/s10875-011-9625-4.

86. Rynda-Apple A, Robinson KM, Alcorn JF. Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease. Infect Immun 2015; 83(10), 3764-70. doi: 10.1128/IAI.00298-15.

87. Lee B, Robinson KM, McHugh KJ, Scheller EV, Mandalapu S, Chen C, et al. Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309(2), L158-67. doi: 10.1152/ajplung.00338.2014.

88. Schliehe C, Flynn EK, Vilagos B, Richson U, Swaminanthan S, Bosnjak B, et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol 2015; 16(1), 67- 74. doi: 10.1038/ni.3046.

89. Kroetz DN, Allen RM, Schaller MA, Cavallaro C, Ito T, Kunkel SL. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection. PLoS Pathog 2015; 11(12), e1005338. doi: 10.1371/journal.ppat.1005338.

90. Cao J, Wang D, Xu F, Gong Y, Wang H, Song Z, et al. Activation of IL-27 signalling promotes development of postinfluenza pneumococcal pneumonia. EMBO Mol Med 2014; 6(1), 120-40. doi: 10.1002/emmm.201302890.

91. Li W, Moltedo B, Moran TM. Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of gammadelta T cells. J Virol 2012; 86(22), 12304-12. doi: 10.1128/JVI.01269-12.

92. Dejager L, Vandevyver S, Ballegeer M, Van Wonterghem E, An LL, Riggs J, et al. Pharmacological inhibition of type I interferon signaling protects mice against lethal sepsis. J Infect Dis 2014; 209(6), 960- 70. doi: 10.1093/infdis/jit600.

93. Huber VC, Peltola V, Iverson AR, McCullers JA. Contribution of vaccine-induced immunity toward either the HA or the NA component of influenza viruses limits secondary bacterial complications. J Virol 2010; 84(8), 4105-8. doi: 10.1128/JVI.02621-09.

94. Chaussee MS, Sandbulte HR, Schuneman MJ, Depaula FP, Addengast LA, Schlenker EH, et al. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections. Vaccine 2011; 29(21), 3773-81. doi: 10.1016/j.vaccine.2011.03.031.

95. Lee SE, Eick A, Bloom MS, Brundage JF. Influenza immunization and subsequent diagnoses of group A streptococcus-illnesses among U.S. Army trainees, 2002-2006. Vaccine 2008; 26(27-28), 3383-6. doi: 10.1016/j.vaccine.2008.04.041.

96. Belshe RB, Gruber WC. Prevention of otitis media in children with live attenuated influenza vaccine given intranasally. Pediatr Infect Dis J 2000; 19(5 Suppl), S66-71. PubMed PMID: 10821474.

97. McCullers JA. Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J Infect Dis 2004; 190(3), 519-26. doi: 10.1086/421525.

98. Hayden FG, Osterhaus AD, Treanor JJ, Fleming DM, Aoki FY, Nicholson KG, et al. Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenzavirus infections. GG167 Influenza Study Group. N Engl J Med 1997; 337(13), 874-80. doi: 10.1056/NEJM199709253371302.

99. Kaiser L, Keene ON, Hammond JM, Elliott M, Hayden FG. Impact of zanamivir on antibiotic use for respiratory events following acute influenza in adolescents and adults. Arch Intern Med 2000; 160(21), 3234-40. PubMed PMID: 11088083.

100. Kaiser L, Wat C, Mills T, Mahoney P, Ward P, Hayden F. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch Intern Med 2003; 163(14), 1667-72. doi: 10.1001/archinte.163.14.1667.

101. Nicholson KG, Aoki FY, Osterhaus AD, Trottier S, Carewicz O, Mercier CH, et al. Efficacy and safety of oseltamivir in treatment of acute influenza: a randomised controlled trial. Neuraminidase Inhibitor Flu Treatment Investigator Group. Lancet 2000; 355(9218), 1845-50. PubMed PMID: 10866439.

102. Smith AM, Huber VC. The Unexpected Impact of Vaccines on Secondary Bacterial Infections Following Influenza. Viral Immunol 2018; 31(2), 159-73. doi: 10.1089/vim.2017.0138.

103. Zang N, Xie X, Deng Y, Wu S, Wang L, Peng C, et al. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J Virol 2011; 85(24), 13061-8. doi: 10.1128/JVI.05869-11.

104. Baumgarth N, Kelso A. In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol 1996; 70(7), 4411-8. PubMed PMID: 8676464.

105. Wolf S, Johnson S, Perwitasari O, Mahalingam S, Tripp RA. Targeting the pro-inflammatory factor CCL2 (MCP-1) with Bindarit for influenza A (H7N9) treatment. Clin Transl Immunology 2017; 6(3), e135. doi: 10.1038/cti.2017.8.


Для цитирования:


Egorov A. The problem of bacterial complications post respiratory viral infections. Microbiology Independent Research Journal (MIR Journal). 2018;5(1):12-21. https://doi.org/10.18527/2500-2236-2018-5-1-12-21

For citation:


Egorov A. The problem of bacterial complications post respiratory viral infections. Microbiology Independent Research Journal (MIR Journal). 2018;5(1):12-21. https://doi.org/10.18527/2500-2236-2018-5-1-12-21

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-2236 (Online)