Preview

Microbiology Independent Research Journal (MIR Journal)

Advanced search

The use of microarrays for identification of the origin of genes of avian influenza viruses in wild birds

https://doi.org/10.18527/2500-2236-2017-4-1-10-20

Abstract

Forty-two strains of avian influenza viruses were isolated from the wild waterfowl’s feces in the city of Moscow. These viruses as well as reference strains and some experimental reassortants were analyzed by microarrays. The used microarrays contained 176 probes to the different segments of influenza virus genome. The microarray allows to determine 1) the hemagglutinin and neuraminidase proteins subtype; 2) the primary structure of the C-terminal sequence of the viral NS1 protein, which serves as a ligand for the PDZ domain; 3) the presence of stop codons and substitution N66S in the reading frame of the viral protein PB1-F2; 4) the presence of the polybasic site for hemagglutinin cleavage. The viruses of H3N1, H3N6, H3N8, H4N6, H1N1, H5N3 and H11N9 subtypes were identified from the group of wild bird’s isolates. All isolates contained the ESEV sequence at the C-terminus of the NS1 protein and the full-length reading frame for the PB1-F2 protein. The replacement of N66S in PB1-F2 was found in six strains. However, the presence of ESEV sequence (ligand of PDZ domain) in the NS1 virus protein and the N66S substitution in PB1-F2 did not lead to the pathogenicity of these viruses for mice. All isolates demonstrated high yield growth in chicken embryos, were infectious and immunogenic for mice, but did not induce any clinical symptoms.

About the Authors

R. N. Heydarov
Engelhardt Institute of Molecular Biology, RAS
Russian Federation
Moscow


N. F. Lomakina
Chumakov Federal scientific center for research and development of immune-and-biological products
Russian Federation
Moscow


E. Yu. Boravleva
Chumakov Federal scientific center for research and development of immune-and-biological products
Russian Federation
Moscow


I. S. Kholodilov
Chumakov Federal scientific center for research and development of immune-and-biological products
Russian Federation
Moscow


A. S. Gambaryan
Chumakov Federal scientific center for research and development of immune-and-biological products
Russian Federation

Alexandra Gambaryan

Moscow



V. M. Mikhailovich
Engelhardt Institute of Molecular Biology, RAS
Russian Federation
Moscow


E. E. Fesenko
Institute of Cell Biophysics, RAS
Russian Federation
Pushchino


References

1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992; 56(1), 152-79. PubMed PMID: 1579108.

2. Alexander DJ. Should we change the definition of avian influenza for eradication purposes? Avian Dis. 2003; 47(3 Suppl), 976-81. doi: 10.1637/0005-2086-47.s3.976.

3. Stech O, Veits J, Weber S, Deckers D, Schroer D, Vahlenkamp TW, et al. Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J Virol. 2009; 83(11), 5864-8. doi: 10.1128/JVI.02649-08.

4. Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol. 2001; 146(5), 963-73. doi: 10.1007/s007050170128.

5. Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001; 293(5536), 1840-2. doi: 10.1126/science.1062882.

6. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA. 2005; 102(51), 18590-5. doi: 10.1073/pnas.0507415102.

7. Imai H, Shinya K, Takano R, Kiso M, Muramoto Y, Sakabe S, et al. The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets. PLoS Pathog. 2010; 6(9), e1001106. doi: 10.1371/journal.ppat.1001106.

8. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 2001; 7(12), 1306-12. doi: 10.1038/nm1201-1306.

9. Conenello GM, Tisoncik JR, Rosenzweig E, Varga ZT, Palese P, Katze MG. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol. 2011; 85(2), 652-62. doi: 10.1128/JVI.01987-10.

10. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 2007; 3(10), 1414- 21. doi: 10.1371/journal.ppat.0030141.

11. Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002; 8(9), 950-4. doi:10.1038/nm757.

12. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008; 82(3), 1146-54. doi: 10.1128/JVI.01698-07.

13. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA. 2008; 105(11), 4381-6. doi: 10.1073/pnas.0800482105.

14. Heydarov RN, Fesenko EE, Shaskolskiy BL, Klotchenko SA, Vasin AV, Titov SV, et al. Identification of genetic determinants of influenza A virus resistance to adamantanes and neuraminidase inhibitors using biological microarray. Dokl Biochem Biophys. 2015; 460, 4-8. doi: 10.1134/S1607672915010032.

15. Worobey M, Han GZ, Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. 2014; 508(7495), 254-7. doi: 10.1038/nature13016.

16. Боравлева ЕЮ, Ломакина НФ, Гамбарян АС. Выделение вирусов гриппа А от птиц на водоёмах Москвы. Казарка. 2012; 15(2), 13-30.

17. Boravleva EY, Chvala IA, Lomakina NF, Repin PI, Mudrak NS, Rudenko LG, et al. Testing of apathogenic influenza virus H5N3 as a poultry live vaccine. Vopr Virusol. 2015; 60(4), 44-9. PubMed PMID: 26665435.

18. Gambaryan AS, Boravleva EY, Lomakina NF, Kropotkina EA, Gordeychuk IV, Chvala IA, et al. Immunization with live nonpathogenic H5N3 duck influenza virus protects chickens against highly pathogenic H5N1 virus. Acta Virol. 2016; 60(3), 316- 27. doi: 10.4149/av_2016_03_316.

19. Lomakina NF, Boravleva EY, Kropotkina EA, Yamnikova SS, Drygin VV, Gambaryan AS. Attenuation of A/Chicken/Kurgan/3/2005 (H5N1) influenza virus using selection in an environment simulating the life cycle of wild duck viruses. Mol Gen Mikrobiol Virusol. 2011; 26, 132-139. doi: 10.3103/S0891416811030025.

20. Alexandrova GI, Polezhaev FI, Budilovsky GN, Garmashova LM, Topuria NA, Egorov AY, et al. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees. Infect Immun. 1984; 44(3), 734-9. PubMed PMID: 6724695.

21. Киселева ИВ, Voeten JTM., Teley LC, Ларионова НВ, Дубровина ИА, Бердыгулова ЖА, Баженова ЕА, van den Bosch H, Heldens JG, Руденко ЛГ. Анализ состава генома штаммов сезонной и пандемической живой гриппозной вакцины. Молекулярная генетика, микробиология и вирусология. 2011; 4, 29-36.


Review

For citation:


Heydarov R.N., Lomakina N.F., Boravleva E.Yu., Kholodilov I.S., Gambaryan A.S., Mikhailovich V.M., Fesenko E.E. The use of microarrays for identification of the origin of genes of avian influenza viruses in wild birds. Microbiology Independent Research Journal (MIR Journal). 2017;4(1):10-20. (In Russ.) https://doi.org/10.18527/2500-2236-2017-4-1-10-20

Views: 90


ISSN 2500-2236 (Online)