Influenza vaccines manufacturing in continuous cell lines: problems and solutions

Полный текст:


In order to decrease the morbidity and mortality caused by seasonal influenza outbreaks, several hundred million vaccine doses are produced worldwide each year. The predominant substrate for the production of the influenza vaccine today is fertilized hen’s eggs. The substitution of the technology based on living organisms by the cell culture-based process offers many advantages, including easier scalability and reduced dependence on the availability of eggs. The African green monkey kidney and Madin Darby canine kidney cell lines support the efficient growth of influenza viruses of different subtypes and, therefore, are considered to be the two most promising alternative substrates for the production of the human influenza vaccine.
However, the pH of endosomes in both of these cell lines is higher than the pH essential for triggering a conformational change of the hemagglutinin (HA) of human influenza viruses, which enables the viral-cellular membrane fusion. This mismatch gives rise to mutations in the HA that lead to an increase of the optimum pH of HA conformational change. As of a result of these mismatches, the HA, and consequently the whole virus, has reduced stability to low pH and elevated temperatures. The production of a vaccine from less stable virus will lead to an elevated HA content in the low pH conformation that can affect the safety, potency, infectivity, and protective efficacy of the final inactivated and live attenuated influenza vaccines.
The main limitations of the cell line-based influenza vaccine technology and the possibilities to preserve the viral stability over the course of influenza vaccine production are discussed in the review.

Ключевые слова

Об авторе

Ju. Romanova
EURRUS Biotech GmbH

Julia Romanova 


Список литературы

1. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, et al. Human infection with influenza H9N2. Lancet. 1999; 354(9182), 916-7. doi: 10.1016/S0140-6736(99)03311-5.

2. Eames KT, Webb C, Thomas K, Smith J, Salmon R, Temple JM. Assessing the role of contact tracing in a suspected H7N2 influenza A outbreak in humans in Wales. BMC Infect Dis. 2010; 10, 141. doi: 10.1186/1471-2334-10-141.

3. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004; 101(5), 1356-61. doi: 10.1073/pnas.0308352100.

4. Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W, et al. Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis. 2004; 10(12), 2196-9. doi: 10.3201/eid1012.040961.

5. Kuiken T. Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc Biol Sci. 2013; 280(1763), 20130990. doi: 10.1098/rspb.2013.0990.

6. Partridge J, Kieny MP, World Health Organization HNivTF. Global production of seasonal and pandemic (H1N1) influenza vaccines in 2009-2010 and comparison with previous estimates and global action plan targets. Vaccine. 2010; 28(30), 4709-12. doi: 10.1016/j.vaccine.2010.04.083.

7. Ehrlich HJ, Muller M, Oh HM, Tambyah PA, Joukhadar C, Montomoli E, et al. A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. N Engl J Med. 2008; 358(24), 2573-84. doi: 10.1056/NEJMoa073121.

8. Palache AM, Brands R, van Scharrenburg GJ. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J Infect Dis. 1997; 176 Suppl 1: S20-3. doi: 10.1086/514169.

9. Doroshenko A, Halperin SA. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines. 2009; 8(6), 679-88. doi: 10.1586/erv.09.31.

10. Baxter R, Patriarca PA, Ensor K, Izikson R, Goldenthal KL, Cox MM. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok(R) trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy adults 50-64 years of age. Vaccine. 2011; 29(12), 2272-8. doi: 10.1016/j.vaccine.2011.01.039.

11. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol. 2007; 171(4),1215-23. doi: 10.2353/ajpath.2007.070248.

12. Sriwilaijaroen N, Wilairat P, Hiramatsu H, Takahashi T, Suzuki T, Ito M, et al. Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Virol J. 2009; 6, 124. doi: 10.1186/1743-422X-6-124.

13. England RJ, Homer JJ, Knight LC, Ell SR. Nasal pH measurement: a reliable and repeatable parameter. Clin Otolaryngol Allied Sci. 1999; 24(1), 67-8. doi: 10.1046/j.1365-2273.1999.00223.x.

14. Washington N, Steele RJ, Jackson SJ, Bush D, Mason J, Gill DA, et al. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm. 2000; 198(2), 139-46. doi: 10.1016/S0378-5173(99)00442-1.

15. Hehar SS, Mason JD, Stephen AB, Washington N, Jones NS, Jackson SJ, et al. Twenty-four hour ambulatory nasal pH monitoring. Clin Otolaryngol Allied Sci. 1999; 24(1), 24-5. doi: 10.1046/j.1365-2273.1999.00190.x.

16. McShane D, Davies JC, Davies MG, Bush A, Geddes DM, Alton EW. Airway surface pH in subjects with cystic fibrosis. Eur Respir J. 2003; 21(1), 37-42. doi: 10.1183/09031936.03.00027603.

17. Fischer H, Widdicombe JH. Mechanisms of acid and base secretion by the airway epithelium. J Membr Biol. 2006; 211(3), 139-50. doi:10.1007/s00232-006-0861-0.

18. Wine JJ, Joo NS. Submucosal glands and airway defense. Proc Am Thorac Soc. 2004; 1(1), 47-53. doi: 10.1513/pats.2306015.

19. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000; 69, 531-69. doi: 10.1146/annurev.biochem.69.1.531.

20. Scholtissek C. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine. 1985; 3(3 Suppl), 215-8. doi: 10.1016/0264-410X(85)90109-4.

21. Krenn BM, Egorov A, Romanovskaya-Romanko E, Wolschek M, Nakowitsch S, Ruthsatz T, et al. Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS ONE. 2011; 6(4), e18577. doi: 10.1371/journal.pone.0018577.

22. Garten W, Braden C, Arendt A, Peitsch C, Baron J, Lu Y, et al. Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics. Eur J Cell Biol. 2015; 94(7-9), 375-83. doi: 10.1016/j.ejcb.2015.05.013.

23. Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994; 68(9), 6074-8. PubMed PMID: 8057485; PubMed Central PMCID: PMCPMC237016.

24. Lu B, Zhou H, Ye D, Kemble G, Jin H. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics. J Virol. 2005; 79(11), 6763-71. doi: 10.1128/JVI.79.11.6763-6771.2005.

25. Lin YP, Wharton SA, Martin J, Skehel JJ, Wiley DC, Steinhauer DA. Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion. Virology. 1997; 233(2), 402-10. doi: 10.1006/viro.1997.8626.

26. Robertson JS. An overview of host cell selection. Dev Biol Stand. 1999; 98, 7-11; discussion 73-4. PubMed PMID: 10494955.

27. Azzi A, Bartolomei-Corsi O, Zakrzewska K, Corcoran T, Newman R, Robertson JS, et al. The haemagglutinins of influenza A (H1N1) viruses in the ‘O’ or ‘D’ phases exhibit biological and antigenic differences. Epidemiol Infect. 1993; 111(1), 135-42. PubMed PMID: 8348927.

28. Romanova J, Katinger D, Ferko B, Voglauer R, Mochalova L, Bovin N, et al. Distinct host range of influenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specific glycosylation pattern. Virology. 2003; 307(1), 90-7. doi: 10.1016/S0042-6822(02)00064-8.

29. Mochalova L, Gambaryan A, Romanova J, Tuzikov A, Chinarev A, Katinger D, et al. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology. 2003; 313(2), 473-80. doi: 10.1016/S0042-6822(03)00377-5.

30. Govorkova EA, Murti G, Meignier B, de Taisne C, Webster RG. African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J Virol. 1996; 70(8), 5519- 24. PubMed PMID: 8764064; PubMed Central PMCID: PMCPMC190510.

31. Murakami S, Horimoto T, Ito M, Takano R, Katsura H, Shimojima M, et al. Enhanced growth of influenza vaccine seed viruses in vero cells mediated by broadening the optimal pH range for virus membrane fusion. J Virol. 2012; 86(3), 1405-10. doi: 10.1128/JVI.06009-11.

32. Stray SJ, Air GM. Apoptosis by influenza viruses correlates with efficiency of viral mRNA synthesis. Virus Res. 2001; 77(1), 3-17. doi: 10.1016/S0168-1702(01)00260-X.

33. Nakowitsch S, Waltenberger AM, Wressnigg N, Ferstl N, Triendl A, Kiefmann B, et al. Egg- or cell culture-derived hemagglutinin mutations impair virus stability and antigen content of inactivated influenza vaccines. Biotechnol J. 2014; 9(3), 405-14. doi: 10.1002/biot.201300225.

34. Nakowitsch S, Wolschek M, Morokutti A, Ruthsatz T, Krenn BM, Ferko B, et al. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1. Vaccine. 2011; 29(19), 3517-24. doi: 10.1016/j.vaccine.2011.02.100.

35. Wood JM, Mumford J, Schild GC, Webster RG, Nicholson KG. Single-radial-immunodiffusion potency tests of inactivated influenza vaccines for use in man and animals. Dev Biol Stand. 1986; 64, 169-77. PubMed PMID: 3098605.

36. DuBois RM, Zaraket H, Reddivari M, Heath RJ, White SW, Russell CJ. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity. PLoS Pathog. 2011; 7(12), e1002398. doi: 10.1371/journal.ppat.1002398.

37. Reed ML, Yen HL, DuBois RM, Bridges OA, Salomon R, Webster RG, et al. Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. J Virol. 2009; 83(8), 3568-80. doi: 10.1128/JVI.02238-08.

38. Cotter CR, Jin H, Chen Z. A single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivity. PLoS Pathog. 2014; 10(1), e1003831. doi: 10.1371/journal.ppat.1003831.

39. Daniels RS, Downie JC, Hay AJ, Knossow M, Skehel JJ, Wang ML, et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell. 1985; 40(2), 431-9. doi: 10.1016/0092-8674(85)90157-6.

40. Steinhauer DA, Martin J, Lin YP, Wharton SA, Oldstone MB, Skehel JJ, et al. Studies using double mutants of the conformational transitions in influenza hemagglutinin required for its membrane fusion activity. Proc Natl Acad Sci USA. 1996; 93(23), 12873-8. PubMed PMID: 8917512; PubMed Central PMCID: PMCPMC24013.

41. Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994; 371(6492), 37-43. Epub 1994/09/01. doi: 10.1038/371037a0.

42. Thoennes S, Li ZN, Lee BJ, Langley WA, Skehel JJ, Russell RJ, et al. Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. Virology. 2008; 370(2), 403-14. doi: 10.1016/j.virol.2007.08.035.

43. Carr CM, Chaudhry C, Kim PS. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci USA. 1997; 94(26), 14306-13. PubMed PMID: 9405608; PubMed Central PMCID: PMCPMC24954.

44. Babiuk S, Skowronski DM, De Serres G, HayGlass K, Brunham RC, Babiuk L. Aggregate content influences the Th1/Th2 immune response to influenza vaccine: evidence from a mouse model. J Med Virol. 2004; 72(1), 138-42. doi: 10.1002/jmv.10540.

45. De Serres G, Boulianne N, Duval B, Rochette L, Grenier JL, Roussel R, et al. Oculo-respiratory syndrome following influenza vaccination: evidence for occurrence with more than one influenza vaccine. Vaccine. 2003; 21(19-20), 2346-53. doi: 10.1016/S0264-410X(03)00095-1.

46. Amorij JP, Huckriede A, Wilschut J, Frijlink HW, Hinrichs WL. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008; 25(6), 1256-73. doi: 10.1007/s11095-008-9559-6.

47. Weldon WC, Wang BZ, Martin MP, Koutsonanos DG, Skountzou I, Compans RW. Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS ONE. 2010; 5(9). doi: 10.1371/journal.pone.0012466.

48. Quan FS, Li ZN, Kim MC, Yang D, Compans RW, Steinhauer DA, et al. Immunogenicity of low-pH treated whole viral influenza vaccine. Virology. 2011; 417(1), 196-202. doi: 10.1016/j.virol.2011.05.014.

49. Bresson JL, Perronne C, Launay O, Gerdil C, Saville M, Wood J, et al. Safety and immunogenicity of an inactivated split-virion influenza A/ Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet. 2006; 367(9523), 1657-64. doi: 10.1016/S0140-6736(06)68656-X.

50. Treanor JJ, Campbell JD, Zangwill KM, Rowe T, Wolff M. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N Engl J Med. 2006; 354(13), 1343-51. doi: 10.1056/NEJMoa055778.

51. Wei CJ, Xu L, Kong WP, Shi W, Canis K, Stevens J, et al. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol. 2008; 82(13), 6200-8. doi: 10.1128/JVI.00187-08.

52. Budimir N, de Haan A, Meijerhof T, Gostick E, Price DA, Huckriede A, et al. Heterosubtypic crossprotection induced by whole inactivated influenza virus vaccine in mice: influence of the route of vaccine administration. Influenza Other Respir Viruses. 2013; 7(6), 1202-9. doi: 10.1111/irv.12142.

53. Steinhauer DA, Wharton SA, Skehel JJ, Wiley DC, Hay AJ. Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc Natl Acad Sci USA. 1991; 88(24), 11525-9. doi: 10.1073/ pnas.88.24.11525.

54. Sergeeva M, Krokhin A, Matrosovich M, Matrosovich T, Wolschek M, Kiselev O, Romanova J. H5N1 influenza vaccine quality is affected by hemagglutinin conformational stability. MIR J. 2014; 1(1), 12-21. doi: 10.18527/2500-2236-2014-1-1-12-26.

55. Ambrose CS, Luke C, Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respir Viruses. 2008; 2(6), 193-202. doi: 10.1111/j.1750-2659.2008.00056.x.

56. Rudenko LG, Arden NH, Grigorieva E, Naychin A, Rekstin A, Klimov AI, et al. Immunogenicity and efficacy of Russian live attenuated and US inactivated influenza vaccines used alone and in combination in nursing home residents. Vaccine. 2000; 19(2-3), 308-18. PubMed PMID: 10930686.

57. Isakova-Sivak I, Stukova M, Erofeeva M, Naykhin A, Donina S, Petukhova G, et al. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers. Hum Vaccin Immunother. 2015; 11(4), 970-82. doi: 10.1080/21645515.2015.1010859.

58. Talaat KR, Karron RA, Liang PH, McMahon BA, Luke CJ, Thumar B, et al. An open-label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults. Influenza Other Respir Viruses. 2013; 7(1), 66-73. doi: 10.1111/j.1750-2659.2012.00350.x.

59. Maassab HF. Biologic and immunologic characteristics of cold-adapted influenza virus. J Immunol. 1969; 102(3), 728-32. PubMed PMID: 5773321.

60. Isakova-Sivak I, de Jonge J, Smolonogina T, Rekstin A, van Amerongen G, van Dijken H, et al. Development and pre-clinical evaluation of two LAIV strains against potentially pandemic H2N2 influenza virus. PLoS One. 2014; 9(7), e102339. doi: 10.1371/journal.pone.0102339.

61. O’Donnell CD, Vogel L, Matsuoka Y, Jin H, Subbarao K. The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines. J Virol. 2014; 88(21), 12374-84. doi: 10.1128/JVI.01107-14.

62. Talaat KR, Karron RA, Luke CJ, Thumar B, McMahon BA, Chen GL, et al. An open label Phase I trial of a live attenuated H6N1 influenza virus vaccine in healthy adults. Vaccine. 2011; 29(17), 3144-8. doi: 10.1016/j.vaccine.2011.02.043.

63. Karron RA, Callahan K, Luke C, Thumar B, McAuliffe J, Schappell E, et al. A live attenuated H9N2 influenza vaccine is well tolerated and immunogenic in healthy adults. J Infect Dis. 2009; 199(5), 711-6. doi: 10.1086/596558.

64. Alvarado-Facundo E, Gao Y, Ribas-Aparicio RM, Jimenez-Alberto A, Weiss CD, Wang W. Influenza virus M2 protein ion channel activity helps to maintain pandemic 2009 H1N1 virus hemagglutinin fusion competence during transport to the cell surface. J Virol. 2015; 89(4), 1975-85. doi: 10.1128/JVI.03253-14.

65. Wolkerstorfer A, Katinger D, Romanova J. Factors affecting the immunogenicity of the live attenuated influenza vaccine produced in continuous cell line. MIR J. 2016; 3(1), 13-24. doi: 10.18527/2500-2236-2016-3-1-13-24.

66. Karron RA, Talaat K, Luke C, Callahan K, Thumar B, Dilorenzo S, et al. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine. 2009; 27(36), 4953-60. doi: 10.1016/j.vaccine.2009.05.099.

67. Rudenko L, Desheva J, Korovkin S, Mironov A, Rekstin A, Grigorieva E, et al. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I-II clinical trials). Influenza Other Respi Viruses. 2008; 2(6), 203-9. doi: 10.1111/j.1750-2659.2008.00064.x.

68. Roethl E, Gassner M, Krenn BM, RomanovskayaRomanko EA, Seper H, Romanova J, et al. Antimycoticantibiotic amphotericin B promotes influenza virus replication in cell culture. J Virol. 2011; 85(21), 11139-45. doi: JVI.00169-11.

69. Rybak SL, Murphy RF. Primary cell cultures from murine kidney and heart differ in endosomal pH. J Cell Physiol. 1998; 176(1), 216-22. doi: 10.1002/(SICI)1097-4652(199807)176:1<216::AIDJCP23>3.0.CO;2-3.

Для цитирования:

Romanova J. Influenza vaccines manufacturing in continuous cell lines: problems and solutions. Microbiology Independent Research Journal (MIR Journal). 2017;4(1):1-9.

For citation:

Romanova J. Influenza vaccines manufacturing in continuous cell lines: problems and solutions. Microbiology Independent Research Journal (MIR Journal). 2017;4(1):1-9.

Просмотров: 168

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2500-2236 (Online)